本文实例讲述了Python实现的计算马氏距离算法。分享给大家供大家参考,具体如下:
我给写成函数调用了
python实现马氏距离源代码:
# encoding: utf-8 from __future__ import division import sys reload(sys) sys.setdefaultencoding('utf-8') import numpy as np def mashi_distance(x,y): print x print y #马氏距离要求样本数要大于维数,否则无法求协方差矩阵 #此处进行转置,表示10个样本,每个样本2维 X=np.vstack([x,y]) print X XT=X.T print XT #方法一:根据公式求解 S=np.cov(X) #两个维度之间协方差矩阵 SI = np.linalg.inv(S) #协方差矩阵的逆矩阵 #马氏距离计算两个样本之间的距离,此处共有4个样本,两两组合,共有6个距离。 n=XT.shape[0] d1=[] for i in range(0,n): for j in range(i+1,n): delta=XT[i]-XT[j] d=np.sqrt(np.dot(np.dot(delta,SI),delta.T)) print d d1.append(d) if __name__ == '__main__': # 第一列 x = [3, 5, 2, 8] # 第二列 y = [4, 6, 2, 4] mashi_distance(x,y)
运行结果:
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。