温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

TensorFlow平台下Python实现神经网络

发布时间:2020-10-17 19:00:55 来源:脚本之家 阅读:308 作者:Jaster_wisdom 栏目:开发技术

本篇文章主要通过一个简单的例子来实现神经网络。训练数据是随机产生的模拟数据集,解决二分类问题。

下面我们首先说一下,训练神经网络的一般过程:

1.定义神经网络的结构和前向传播的输出结果

2.定义损失函数以及反向传播优化的算法

3.生成会话(Session)并且在训练数据上反复运行反向传播优化算法

要记住的一点是,无论神经网络的结构如何变化,以上三个步骤是不会改变的。

完整代码如下:

import tensorflow as tf 
#导入TensorFlow工具包并简称为tf 
 
from numpy.random import RandomState 
#导入numpy工具包,生成模拟数据集 
 
batch_size = 8 
#定义训练数据batch的大小 
 
w1 = tf.Variable(tf.random_normal([2,3],stddev=1,seed=1)) 
w2 = tf.Variable(tf.random_normal([3,1],stddev=1,seed=1)) 
#分别定义一二层和二三层之间的网络参数,标准差为1,随机产生的数保持一致 
 
x = tf.placeholder(tf.float32,shape=(None,2),name='x-input') 
y_ = tf.placeholder(tf.float32,shape=(None,1),name='y-input') 
#输入为两个维度,即两个特征,输出为一个标签,声明数据类型float32,None即一个batch大小 
#y_是真实的标签 
 
a = tf.matmul(x,w1) 
y = tf.matmul(a,w2) 
#定义神经网络前向传播过程 
 
cross_entropy = -tf.reduce_mean(y_ * tf.log(tf.clip_by_value(y,1e-10,1.0))) 
train_step = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) 
#定义损失函数和反向传播算法 
 
rdm = RandomState(1) 
dataset_size = 128 
#产生128组数据 
X = rdm.rand(dataset_size,2) 
Y = [[int(x1+x2 < 1)] for (x1,x2) in X] 
#将所有x1+x2<1的样本视为正样本,表示为1;其余为0 
 
#创建会话来运行TensorFlow程序 
with tf.Session() as sess: 
 init_op = tf.global_variables_initializer() 
 #初始化变量 
 sess.run(init_op) 
 
 print(sess.run(w1)) 
 print(sess.run(w2)) 
 #打印出训练网络之前网络参数的值 
 
 STEPS = 5000 
 #设置训练的轮数 
 for i in range(STEPS): 
  start = (i * batch_size) % dataset_size 
  end = min(start+batch_size,dataset_size) 
 #每次选取batch_size个样本进行训练 
  
  sess.run(train_step,feed_dict={x:X[start:end],y_:Y[start:end]}) 
 #通过选取的样本训练神经网络并更新参数 
  
  if i%1000 == 0: 
   total_cross_entropy = sess.run(cross_entropy,feed_dict={x:X,y_:Y}) 
   print("After %d training step(s),cross entropy on all data is %g" % (i,total_cross_entropy)) 
 #每隔一段时间计算在所有数据上的交叉熵并输出,随着训练的进行,交叉熵逐渐变小 
 
 print(sess.run(w1)) 
 print(sess.run(w2)) 
 #打印出训练之后神经网络参数的值 

运行结果如下:

TensorFlow平台下Python实现神经网络

结果说明:

首先是打印出训练之前的网络参数,也就是随机产生的参数值,然后将训练过程中每隔1000次的交叉熵输出,发现交叉熵在逐渐减小,说明分类的性能在变好。最后是训练网络结束后网络的参数。

分享一个图形化神经网络训练过程的网站:点这里,可以自己定义网络参数的大小,层数以及学习速率的大小,并且训练过程会以很直观的形式展示出来。比如:

TensorFlow平台下Python实现神经网络

 TensorFlow平台下Python实现神经网络

以上对于神经网络训练过程可以有一个很深刻的理解。

最后,再补充一些TensorFlow相关的知识:

1.TensorFlow计算模型-计算图

       Tensor表示张量,可以简单的理解为多维数据结构;Flow则体现了它的计算模型。Flow翻译过来是“流”,它直观地表达了张量之间通过计算相互转换的过程。TensorFlow中的每一个计算都是计算图上的一个节点,而节点之间的边描述了计算之间的依赖关系。

指定GPU方法,命令如下:

import tensorflow as tf
a = tf.constant([1.0,2.0],name=“a”)
b = tf.constant([3.0,4.0],name=“b”)
g = tf.Graph()
with g.device(/gpu:0):
result = a + b
sess = tf.Session()
sess.run(result)

2.TensorFlow数据模型-张量

      张量是管理数据的形式。零阶张量表示标量,第一阶张量为向量,也就是一维数组,一般来说,第n阶张量可以理解为一个n维数组。张量本身不存储运算的结果,它只是得到对结果的一个引用。可以使用tf.Session().run(result)语句来得到计算结果。

3.TensorFlow运行模型-会话

我们使用session来执行定义好的运算。

主要有以下两种方式,第一种会产生内存泄漏,第二种不会有这种问题。

#创建一个会话
sess = tf.Session()
sess.run(…)
#关闭会话使得本次运行中使用的资源得到释放
sess.close()

第二种方式是通过Python的上下文资源管理器来使用会话。

with tf.Session() as sess:
sess.run(…)

此种方式自动关闭和自动进行资源的释放

4.TensorFlow-神经网络例子

使用神经网络解决分类问题可以分为以下四个步骤:
①提取问题中实体的特征向量作为输入。
②定义神经网络的结构,并定义如何从神经网络的输入得到输出。这个过程就是神经网络的前向传播算法。
③通过训练数据来调整神经网络中参数的设置,这就是训练网络的过程。
④使用训练好的神经网络来预测未知的数据  

在TensorFlow中声明一个2*3的矩阵变量的方法:

weight = tf.Variable(tf.random_normal([2,3],stddev=2))

 即表示为方差为0、标准差为2的正态分布

在TensorFlow中,一个变量的值在被使用之前,这个变量的初始化过程需要被明确调用。一下子初始化所有的变量

sess = tf.Session()
init_op = tf.initialize_all_variables()

或者换成init_op = tf.global_variables_initializer()也可

sess.run(init_op)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持亿速云。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI