本文研究的主要是python处理csv数据动态显示曲线,分享了实现代码,具体如下。
代码:
# -*- coding: utf-8 -*- """ Spyder Editor This temporary script file is located here: C:\Users\user\.spyder2\.temp.py """ """ Show how to modify the coordinate formatter to report the image "z" value of the nearest pixel given x and y """ # coding: utf-8 import time import string import os import math import pylab import numpy as np from numpy import genfromtxt import matplotlib import matplotlib as mpl from matplotlib.colors import LogNorm from matplotlib.mlab import bivariate_normal import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.animation as animation metric = genfromtxt('D:\export.csv', delimiter=',') lines=len(metric) #print len(metric) #print len(metric[4]) #print metric[4] rowdatas=metric[:,0] for index in range(len(metric[4])-1): a=metric[:,index+1] rowdatas=np.row_stack((rowdatas,a)) #print len(rowdatas) #print len(rowdatas[4]) #print rowdatas[4] # #plt.figure(figsize=(38,38), dpi=80) #plt.plot(rowdatas[4] ) #plt.xlabel('time') #plt.ylabel('value') #plt.title("USBHID data analysis") #plt.show() linenum=1 ##如果是参数是list,则默认每次取list中的一个元素,即metric[0],metric[1],... listdata=rowdatas.tolist() print listdata[4] #fig = plt.figure() #window = fig.add_subplot(111) #line, = window.plot(listdata[4] ) fig, ax = plt.subplots() line, = ax.plot(listdata[4],lw=2) ax.grid() time_template = 'Data ROW = %d' time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes) #ax = plt.axes(xlim=(0, 700), ylim=(0, 255)) #line, = ax.plot([], [], lw=2) def update(data): global linenum line.set_ydata(data) # print 'this is line: %d'%linenum time_text.set_text(time_template % (linenum)) linenum=linenum+1 # nextitem = input(u'输入任意字符继续: ') return line, def init(): # ax.set_ylim(0, 1.1) # ax.set_xlim(0, 10) # line.set_data(xdata) plt.xlabel('time') plt.ylabel('Time') plt.title('USBHID Data analysis') return line, ani = animation.FuncAnimation(fig, update,listdata , interval=1*1000,init_func=init,repeat=False) plt.show()
总结
以上就是本文关于python处理csv数据动态显示曲线实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。