把代码块声明为 synchronized,有两个重要后果,通常是指该代码具有 原子性(atomicity)和 可见性(visibility)。
volatile的使用条件
Volatile 变量具有 synchronized 的可见性特性,但是不具备原子性。这就是说线程能够自动发现 volatile 变量的最新值。
Volatile 变量可用于提供线程安全,但是只能应用于非常有限的一组用例:多个变量之间或者某个变量的当前值与修改后值之间没有约束。因此,单独使用 volatile 还不足以实现计数器、互斥锁或任何具有与多个变量相关的不变式(Invariants)的类(例如 “start <=end”)。
出于简易性或可伸缩性的考虑,您可能倾向于使用 volatile 变量而不是锁。当使用 volatile 变量而非锁时,某些习惯用法(idiom)更加易于编码和阅读。此外,volatile 变量不会像锁那样造成线程阻塞,因此也很少造成可伸缩性问题。在某些情况下,如果读操作远远大于写操作,volatile 变量还可以提供优于锁的性能优势。
使用条件
您只能在有限的一些情形下使用 volatile 变量替代锁。要使 volatile 变量提供理想的线程安全,必须同时满足下面两个条件:
实际上,这些条件表明,可以被写入 volatile 变量的这些有效值独立于任何程序的状态,包括变量的当前状态。
第一个条件的限制使 volatile 变量不能用作线程安全计数器。虽然增量操作(x++)看上去类似一个单独操作,实际上它是一个由(读取-修改-写入)操作序列组成的组合操作,必须以原子方式执行,而 volatile 不能提供必须的原子特性。实现正确的操作需要使x 的值在操作期间保持不变,而 volatile 变量无法实现这点。(然而,如果只从单个线程写入,那么可以忽略第一个条件。)
反例
大多数编程情形都会与这两个条件的其中之一冲突,使得 volatile 变量不能像 synchronized 那样普遍适用于实现线程安全。
【反例:volatile变量不能用于约束条件中】 下面是一个非线程安全的数值范围类。它包含了一个不变式 —— 下界总是小于或等于上界
@NotThreadSafe public class NumberRange { private int lower, upper; public int getLower() { return lower; } public int getUpper() { return upper; } public void setLower(int value) { if (value > upper) throw new IllegalArgumentException(...); lower = value; } public void setUpper(int value) { if (value < lower) throw new IllegalArgumentException(...); upper = value; } }
将 lower 和 upper 字段定义为 volatile 类型不能够充分实现类的线程安全;而仍然需要使用同步——使 setLower() 和 setUpper() 操作原子化。
否则,如果凑巧两个线程在同一时间使用不一致的值执行 setLower 和 setUpper 的话,则会使范围处于不一致的状态。例如,如果初始状态是(0, 5),同一时间内,线程 A 调用setLower(4) 并且线程 B 调用setUpper(3),显然这两个操作交叉存入的值是不符合条件的,那么两个线程都会通过用于保护不变式的检查,使得最后的范围值是(4, 3) —— 一个无效值。
volatile的适用场景
模式 #1:状态标志
也许实现 volatile 变量的规范使用仅仅是使用一个布尔状态标志,用于指示发生了一个重要的一次性事件,例如完成初始化或请求停机。
volatile boolean shutdownRequested; ... public void shutdown() { shutdownRequested = true; } public void doWork() { while (!shutdownRequested) { // do stuff } }
线程1执行doWork()的过程中,可能有另外的线程2调用了shutdown,所以boolean变量必须是volatile。
而如果使用 synchronized 块编写循环要比使用 volatile 状态标志编写麻烦很多。由于 volatile 简化了编码,并且状态标志并不依赖于程序内任何其他状态,因此此处非常适合使用 volatile。
这种类型的状态标记的一个公共特性是:通常只有一种状态转换;shutdownRequested 标志从false 转换为true,然后程序停止。这种模式可以扩展到来回转换的状态标志,但是只有在转换周期不被察觉的情况下才能扩展(从false 到true,再转换到false)。此外,还需要某些原子状态转换机制,例如原子变量。
模式 #2:一次性安全发布(one-time safe publication)
在缺乏同步的情况下,可能会遇到某个对象引用的更新值(由另一个线程写入)和该对象状态的旧值同时存在。
这就是造成著名的双重检查锁定(double-checked-locking)问题的根源,其中对象引用在没有同步的情况下进行读操作,产生的问题是您可能会看到一个更新的引用,但是仍然会通过该引用看到不完全构造的对象。
//注意volatile!!!!!!!!!!!!!!!!! private volatile static Singleton instace; public static Singleton getInstance(){ //第一次null检查 if(instance == null){ synchronized(Singleton.class) { //1 //第二次null检查 if(instance == null){ //2 instance = new Singleton();//3 } } } return instance;
如果不用volatile,则因为内存模型允许所谓的“无序写入”,可能导致失败。——某个线程可能会获得一个未完全初始化的实例。
考察上述代码中的 //3 行。此行代码创建了一个 Singleton 对象并初始化变量 instance 来引用此对象。这行代码的问题是:在Singleton 构造函数体执行之前,变量instance 可能成为非 null 的!
什么?这一说法可能让您始料未及,但事实确实如此。
在解释这个现象如何发生前,请先暂时接受这一事实,我们先来考察一下双重检查锁定是如何被破坏的。假设上述代码执行以下事件序列:
模式 #3:独立观察(independent observation)
安全使用 volatile 的另一种简单模式是:定期 “发布” 观察结果供程序内部使用。【例如】假设有一种环境传感器能够感觉环境温度。一个后台线程可能会每隔几秒读取一次该传感器,并更新包含当前文档的 volatile 变量。然后,其他线程可以读取这个变量,从而随时能够看到最新的温度值。
使用该模式的另一种应用程序就是收集程序的统计信息。【例】如下代码展示了身份验证机制如何记忆最近一次登录的用户的名字。将反复使用lastUser 引用来发布值,以供程序的其他部分使用。
public class UserManager { public volatile String lastUser; //发布的信息 public boolean authenticate(String user, String password) { boolean valid = passwordIsValid(user, password); if (valid) { User u = new User(); activeUsers.add(u); lastUser = user; } return valid; } }
模式 #4:“volatile bean” 模式
volatile bean 模式的基本原理是:很多框架为易变数据的持有者(例如 HttpSession)提供了容器,但是放入这些容器中的对象必须是线程安全的。
在 volatile bean 模式中,JavaBean 的所有数据成员都是 volatile 类型的,并且 getter 和 setter 方法必须非常普通——即不包含约束!
@ThreadSafe public class Person { private volatile String firstName; private volatile String lastName; private volatile int age; public String getFirstName() { return firstName; } public String getLastName() { return lastName; } public int getAge() { return age; } public void setFirstName(String firstName) { this.firstName = firstName; } public void setLastName(String lastName) { this.lastName = lastName; } public void setAge(int age) { this.age = age; } }
模式 #5:开销较低的“读-写锁”策略
如果读操作远远超过写操作,您可以结合使用内部锁和 volatile 变量来减少公共代码路径的开销。
如下显示的线程安全的计数器,使用 synchronized 确保增量操作是原子的,并使用 volatile 保证当前结果的可见性。如果更新不频繁的话,该方法可实现更好的性能,因为读路径的开销仅仅涉及 volatile 读操作,这通常要优于一个无竞争的锁获取的开销。
@ThreadSafe public class CheesyCounter { // Employs the cheap read-write lock trick // All mutative operations MUST be done with the 'this' lock held @GuardedBy("this") private volatile int value; //读操作,没有synchronized,提高性能 public int getValue() { return value; } //写操作,必须synchronized。因为x++不是原子操作 public synchronized int increment() { return value++; }
使用锁进行所有变化的操作,使用 volatile 进行只读操作。
其中,锁一次只允许一个线程访问值,volatile 允许多个线程执行读操作
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。