本篇文章给大家分享的是有关怎么在android中使用openCV检测车牌,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
1、导入module
先从官网下载openCVForAndroid的sdk,以3.2.0版本为例,找到依赖库路径,然后导入module。
2、导入动态与静态库
在sdk里面找到lib目录,把所有的.a和.so文件拷贝到项目的libs对应ABI路径下:
3、配置gradle
将依赖的静态库编译到native-libs里面:
task nativeLibsToJar(type: Jar, description: 'create a jar archive of the native libs') { destinationDir file("$buildDir/native-libs") baseName 'native-libs' from fileTree(dir: 'libs', include: '**/*.so') into 'lib/' } tasks.withType(JavaCompile) { compileTask -> compileTask.dependsOn(nativeLibsToJar) } dependencies { compile fileTree(include: ['*.jar'], dir: 'libs') compile fileTree(dir: "$buildDir/native-libs", include: 'native-libs.jar') ...... }
好了,经过配置三步曲,我们就可以愉快地使用openCV了。
------------------------中场休息---------------------------
接下来是调用三步曲:加载openCV、初始化车牌检测器和执行车牌检测
1、加载openCV
调用openCVLoader去加载,如果加载成功进行下一步操作:
private void initOpenCV(){ boolean result = OpenCVLoader.initDebug(); if(result){ Log.i(TAG, "initOpenCV success..."); //初始化车牌检测器 mPlateDetector = new ObjectDetector(this, R.raw.haarcascade_license_plate, 3, new Scalar(255, 0, 0, 0)); mObject = new MatOfRect(); }else { Log.e(TAG, "initOpenCV fail..."); } }
2、初始化检测器
使用车牌检测的级联分类xml文件进行初始化:
/** * 创建级联分类器 * @param context 上下文 * @param id 级联分类器ID * @return 级联分类器 */ private CascadeClassifier createDetector(Context context, int id) { CascadeClassifier javaDetector; InputStream is = null; FileOutputStream os = null; try { is = context.getResources().openRawResource(id); File cascadeDir = context.getDir(LICENSE_PLATE_MODEL, Context.MODE_PRIVATE); File cascadeFile = new File(cascadeDir, id + ".xml"); os = new FileOutputStream(cascadeFile); byte[] buffer = new byte[4096]; int bytesRead; while ((bytesRead = is.read(buffer)) != -1) { os.write(buffer, 0, bytesRead); } javaDetector = new CascadeClassifier(cascadeFile.getAbsolutePath()); if (javaDetector.empty()) { javaDetector = null; } boolean delete = cascadeDir.delete(); Log.i("ObjectDetector", "deleteResult=" + delete); return javaDetector; } catch (IOException e) { e.printStackTrace(); return null; } finally { try { if (null != is) { is.close(); } if (null != os) { os.close(); } } catch (IOException e) { e.printStackTrace(); } } }
3、执行车牌检测
由于openCV操作对象是Mat,所以我们得把Bitmap转成Mat,然后转成Gray灰度图去进行检测:
/** * 执行车牌检测 * @param bitmap bitmap * @return 车牌检测后的bitmap */ private Bitmap doPlateDetecting(Bitmap bitmap){ if(mPlateDetector != null && bitmap != null){ Mat mRgba = new Mat(); Mat mGray = new Mat(); //bitmap转成map Utils.bitmapToMat(bitmap, mRgba); //rgba转成灰度图 Imgproc.cvtColor(mRgba, mGray, Imgproc.COLOR_RGBA2GRAY); // 检测车牌 Rect[] object = mPlateDetector.detectObject(mGray, mObject); if(object != null && object.length > 0){ //检测到车牌区域 Rect rect = object[0]; //矩形标识 Imgproc.rectangle(mRgba, rect.tl(), rect.br(), mPlateDetector.getRectColor(), 3); } //mat转回bitmap Utils.matToBitmap(mRgba, bitmap); } return bitmap; }
其中,detectObject方法体是调用cascadeClassifier的detectMultiScale来完成检测的:
public Rect[] detectObject(Mat gray, MatOfRect object) { mCascadeClassifier.detectMultiScale( gray, // 要检查的灰度图像 object, // 检测到的车牌 1.1, // 表示在前后两次相继的扫描中,搜索窗口的比例系数 mMinNeighbors, // 默认是3 Objdetect.CASCADE_SCALE_IMAGE, getSize(gray, 80), // 检测目标最小值 getSize(gray, 800)); // 检测目标最大值 return object.toArray(); }
以上就是怎么在android中使用openCV检测车牌,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。