前提
前面写过一篇关于Environment属性加载的源码分析和扩展,里面提到属性的占位符解析和类型转换是相对复杂的,这篇文章就是要分析和解读这两个复杂的问题。关于这两个问题,选用一个比较复杂的参数处理方法PropertySourcesPropertyResolver#getProperty,解析占位符的时候依赖到
PropertySourcesPropertyResolver#getPropertyAsRawString: protected String getPropertyAsRawString(String key) { return getProperty(key, String.class, false); } protected <T> T getProperty(String key, Class<T> targetValueType, boolean resolveNestedPlaceholders) { if (this.propertySources != null) { for (PropertySource<?> propertySource : this.propertySources) { if (logger.isTraceEnabled()) { logger.trace("Searching for key '" + key + "' in PropertySource '" + propertySource.getName() + "'"); } Object value = propertySource.getProperty(key); if (value != null) { if (resolveNestedPlaceholders && value instanceof String) { //解析带有占位符的属性 value = resolveNestedPlaceholders((String) value); } logKeyFound(key, propertySource, value); //需要时转换属性的类型 return convertValueIfNecessary(value, targetValueType); } } } if (logger.isDebugEnabled()) { logger.debug("Could not find key '" + key + "' in any property source"); } return null; }
属性占位符解析
属性占位符的解析方法是PropertySourcesPropertyResolver的父类AbstractPropertyResolver#resolveNestedPlaceholders:
protected String resolveNestedPlaceholders(String value) { return (this.ignoreUnresolvableNestedPlaceholders ? resolvePlaceholders(value) : resolveRequiredPlaceholders(value)); }
ignoreUnresolvableNestedPlaceholders属性默认为false,可以通过AbstractEnvironment#setIgnoreUnresolvableNestedPlaceholders(boolean ignoreUnresolvableNestedPlaceholders)设置,当此属性被设置为true,解析属性占位符失败的时候(并且没有为占位符配置默认值)不会抛出异常,返回属性原样字符串,否则会抛出IllegalArgumentException。我们这里只需要分析AbstractPropertyResolver#resolveRequiredPlaceholders:
//AbstractPropertyResolver中的属性: //ignoreUnresolvableNestedPlaceholders=true情况下创建的PropertyPlaceholderHelper实例 @Nullable private PropertyPlaceholderHelper nonStrictHelper; //ignoreUnresolvableNestedPlaceholders=false情况下创建的PropertyPlaceholderHelper实例 @Nullable private PropertyPlaceholderHelper strictHelper; //是否忽略无法处理的属性占位符,这里是false,也就是遇到无法处理的属性占位符且没有默认值则抛出异常 private boolean ignoreUnresolvableNestedPlaceholders = false; //属性占位符前缀,这里是"${" private String placeholderPrefix = SystemPropertyUtils.PLACEHOLDER_PREFIX; //属性占位符后缀,这里是"}" private String placeholderSuffix = SystemPropertyUtils.PLACEHOLDER_SUFFIX; //属性占位符解析失败的时候配置默认值的分隔符,这里是":" @Nullable private String valueSeparator = SystemPropertyUtils.VALUE_SEPARATOR; public String resolveRequiredPlaceholders(String text) throws IllegalArgumentException { if (this.strictHelper == null) { this.strictHelper = createPlaceholderHelper(false); } return doResolvePlaceholders(text, this.strictHelper); } //创建一个新的PropertyPlaceholderHelper实例,这里ignoreUnresolvablePlaceholders为false private PropertyPlaceholderHelper createPlaceholderHelper(boolean ignoreUnresolvablePlaceholders) { return new PropertyPlaceholderHelper(this.placeholderPrefix, this.placeholderSuffix, this.valueSeparator, ignoreUnresolvablePlaceholders); } //这里最终的解析工作委托到PropertyPlaceholderHelper#replacePlaceholders完成 private String doResolvePlaceholders(String text, PropertyPlaceholderHelper helper) { return helper.replacePlaceholders(text, this::getPropertyAsRawString); }
最终只需要分析PropertyPlaceholderHelper#replacePlaceholders,这里需要重点注意:
注意到这里的第一个参数text就是属性值的源字符串,例如我们需要处理的属性为myProperties: ${server.port}-${spring.application.name},这里的text就是${server.port}-${spring.application.name}。
replacePlaceholders方法的第二个参数placeholderResolver,这里比较巧妙,这里的方法引用this::getPropertyAsRawString相当于下面的代码:
//PlaceholderResolver是一个函数式接口 @FunctionalInterface public interface PlaceholderResolver { @Nullable String resolvePlaceholder(String placeholderName); } //this::getPropertyAsRawString相当于下面的代码 return new PlaceholderResolver(){ @Override String resolvePlaceholder(String placeholderName){ //这里调用到的是PropertySourcesPropertyResolver#getPropertyAsRawString,有点绕 return getPropertyAsRawString(placeholderName); } }
接着看PropertyPlaceholderHelper#replacePlaceholders的源码:
//基础属性 //占位符前缀,默认是"${" private final String placeholderPrefix; //占位符后缀,默认是"}" private final String placeholderSuffix; //简单的占位符前缀,默认是"{",主要用于处理嵌套的占位符如${xxxxx.{yyyyy}} private final String simplePrefix; //默认值分隔符号,默认是":" @Nullable private final String valueSeparator; //替换属性占位符 public String replacePlaceholders(String value, PlaceholderResolver placeholderResolver) { Assert.notNull(value, "'value' must not be null"); return parseStringValue(value, placeholderResolver, new HashSet<>()); } //递归解析带占位符的属性为字符串 protected String parseStringValue( String value, PlaceholderResolver placeholderResolver, Set<String> visitedPlaceholders) { StringBuilder result = new StringBuilder(value); int startIndex = value.indexOf(this.placeholderPrefix); while (startIndex != -1) { //搜索第一个占位符后缀的索引 int endIndex = findPlaceholderEndIndex(result, startIndex); if (endIndex != -1) { //提取第一个占位符中的原始字符串,如${server.port}->server.port String placeholder = result.substring(startIndex + this.placeholderPrefix.length(), endIndex); String originalPlaceholder = placeholder; //判重 if (!visitedPlaceholders.add(originalPlaceholder)) { throw new IllegalArgumentException( "Circular placeholder reference '" + originalPlaceholder + "' in property definitions"); } // Recursive invocation, parsing placeholders contained in the placeholder key. // 递归调用,实际上就是解析嵌套的占位符,因为提取的原始字符串有可能还有一层或者多层占位符 placeholder = parseStringValue(placeholder, placeholderResolver, visitedPlaceholders); // Now obtain the value for the fully resolved key... // 递归调用完毕后,可以确定得到的字符串一定是不带占位符,这个时候调用getPropertyAsRawString获取key对应的字符串值 String propVal = placeholderResolver.resolvePlaceholder(placeholder); // 如果字符串值为null,则进行默认值的解析,因为默认值有可能也使用了占位符,如${server.port:${server.port-2:8080}} if (propVal == null && this.valueSeparator != null) { int separatorIndex = placeholder.indexOf(this.valueSeparator); if (separatorIndex != -1) { String actualPlaceholder = placeholder.substring(0, separatorIndex); // 提取默认值的字符串 String defaultValue = placeholder.substring(separatorIndex + this.valueSeparator.length()); // 这里是把默认值的表达式做一次解析,解析到null,则直接赋值为defaultValue propVal = placeholderResolver.resolvePlaceholder(actualPlaceholder); if (propVal == null) { propVal = defaultValue; } } } // 上一步解析出来的值不为null,但是它有可能是一个带占位符的值,所以后面对值进行递归解析 if (propVal != null) { // Recursive invocation, parsing placeholders contained in the // previously resolved placeholder value. propVal = parseStringValue(propVal, placeholderResolver, visitedPlaceholders); // 这一步很重要,替换掉第一个被解析完毕的占位符属性,例如${server.port}-${spring.application.name} -> 9090--${spring.application.name} result.replace(startIndex, endIndex + this.placeholderSuffix.length(), propVal); if (logger.isTraceEnabled()) { logger.trace("Resolved placeholder '" + placeholder + "'"); } // 重置startIndex为下一个需要解析的占位符前缀的索引,可能为-1,说明解析结束 startIndex = result.indexOf(this.placeholderPrefix, startIndex + propVal.length()); } else if (this.ignoreUnresolvablePlaceholders) { // 如果propVal为null并且ignoreUnresolvablePlaceholders设置为true,直接返回当前的占位符之间的原始字符串尾的索引,也就是跳过解析 // Proceed with unprocessed value. startIndex = result.indexOf(this.placeholderPrefix, endIndex + this.placeholderSuffix.length()); } else { // 如果propVal为null并且ignoreUnresolvablePlaceholders设置为false,抛出异常 throw new IllegalArgumentException("Could not resolve placeholder '" + placeholder + "'" + " in value \"" + value + "\""); } // 递归结束移除判重集合中的元素 visitedPlaceholders.remove(originalPlaceholder); } else { // endIndex = -1说明解析结束 startIndex = -1; } } return result.toString(); } //基于传入的起始索引,搜索第一个占位符后缀的索引,兼容嵌套的占位符 private int findPlaceholderEndIndex(CharSequence buf, int startIndex) { //这里index实际上就是实际需要解析的属性的第一个字符,如${server.port},这里index指向s int index = startIndex + this.placeholderPrefix.length(); int withinNestedPlaceholder = 0; while (index < buf.length()) { //index指向"}",说明有可能到达占位符尾部或者嵌套占位符尾部 if (StringUtils.substringMatch(buf, index, this.placeholderSuffix)) { //存在嵌套占位符,则返回字符串中占位符后缀的索引值 if (withinNestedPlaceholder > 0) { withinNestedPlaceholder--; index = index + this.placeholderSuffix.length(); } else { //不存在嵌套占位符,直接返回占位符尾部索引 return index; } } //index指向"{",记录嵌套占位符个数withinNestedPlaceholder加1,index更新为嵌套属性的第一个字符的索引 else if (StringUtils.substringMatch(buf, index, this.simplePrefix)) { withinNestedPlaceholder++; index = index + this.simplePrefix.length(); } else { //index不是"{"或者"}",则进行自增 index++; } } //这里说明解析索引已经超出了原字符串 return -1; } //StringUtils#substringMatch,此方法会检查原始字符串str的index位置开始是否和子字符串substring完全匹配 public static boolean substringMatch(CharSequence str, int index, CharSequence substring) { if (index + substring.length() > str.length()) { return false; } for (int i = 0; i < substring.length(); i++) { if (str.charAt(index + i) != substring.charAt(i)) { return false; } } return true; }
上面的过程相对比较复杂,因为用到了递归,我们举个实际的例子说明一下整个解析过程,例如我们使用了四个属性项,我们的目标是获取server.desc的值:
application.name=spring server.port=9090 spring.application.name=${application.name} server.desc=${server.port-${spring.application.name}}:${description:"hello"}
属性类型转换
在上一步解析属性占位符完毕之后,得到的是属性字符串值,可以把字符串转换为指定的类型,此功能由AbstractPropertyResolver#convertValueIfNecessary完成:
protected <T> T convertValueIfNecessary(Object value, @Nullable Class<T> targetType) { if (targetType == null) { return (T) value; } ConversionService conversionServiceToUse = this.conversionService; if (conversionServiceToUse == null) { // Avoid initialization of shared DefaultConversionService if // no standard type conversion is needed in the first place... // 这里一般只有字符串类型才会命中 if (ClassUtils.isAssignableValue(targetType, value)) { return (T) value; } conversionServiceToUse = DefaultConversionService.getSharedInstance(); } return conversionServiceToUse.convert(value, targetType); }
实际上转换的逻辑是委托到DefaultConversionService的父类方法GenericConversionService#convert:
public <T> T convert(@Nullable Object source, Class<T> targetType) { Assert.notNull(targetType, "Target type to convert to cannot be null"); return (T) convert(source, TypeDescriptor.forObject(source), TypeDescriptor.valueOf(targetType)); } public Object convert(@Nullable Object source, @Nullable TypeDescriptor sourceType, TypeDescriptor targetType) { Assert.notNull(targetType, "Target type to convert to cannot be null"); if (sourceType == null) { Assert.isTrue(source == null, "Source must be [null] if source type == [null]"); return handleResult(null, targetType, convertNullSource(null, targetType)); } if (source != null && !sourceType.getObjectType().isInstance(source)) { throw new IllegalArgumentException("Source to convert from must be an instance of [" + sourceType + "]; instead it was a [" + source.getClass().getName() + "]"); } // 从缓存中获取GenericConverter实例,其实这一步相对复杂,匹配两个类型的时候,会解析整个类的层次进行对比 GenericConverter converter = getConverter(sourceType, targetType); if (converter != null) { // 实际上就是调用转换方法 Object result = ConversionUtils.invokeConverter(converter, source, sourceType, targetType); // 断言最终结果和指定类型是否匹配并且返回 return handleResult(sourceType, targetType, result); } return handleConverterNotFound(source, sourceType, targetType); }
上面所有的可用的GenericConverter的实例可以在DefaultConversionService的addDefaultConverters中看到,默认添加的转换器实例已经超过20个,有些情况下如果无法满足需求可以添加自定义的转换器,实现GenericConverter接口添加进去即可。
小结
SpringBoot在抽象整个类型转换器方面做的比较好,在SpringMVC应用中,采用的是org.springframework.boot.autoconfigure.web.format.WebConversionService,兼容了Converter、Formatter、ConversionService等转换器类型并且对外提供一套统一的转换方法。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对亿速云的支持。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。