看到了当当开源的Sharding-JDBC组件,它可以在几乎不修改代码的情况下完成分库分表的实现。摘抄其中一段介绍:
Sharding-JDBC直接封装JDBC API,可以理解为增强版的JDBC驱动,旧代码迁移成本几乎为零:
先做一个最简单的试用,不做分库,仅做分表。选择数据表bead_information,首先复制成三个表:bead_information_0、bead_information_1、bead_information_2
测试实现过程
前提:已经实现srping+mybatis对单库单表做增删改查的项目。
1、修改pom.xml增加dependency
<dependency>
<groupId>com.dangdang</groupId>
<artifactId>sharding-jdbc-core</artifactId>
<version>1.4.2</version>
</dependency>
<dependency>
<groupId>com.dangdang</groupId>
<artifactId>sharding-jdbc-config-spring</artifactId>
<version>1.4.0</version>
</dependency>
2、新建一个sharding-jdbc.xml文件,实现分库分表的配置
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:tx="http://www.springframework.org/schema/tx"
xmlns:rdb="http://www.dangdang.com/schema/ddframe/rdb"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/tx
http://www.springframework.org/schema/tx/spring-tx.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.dangdang.com/schema/ddframe/rdb
http://www.dangdang.com/schema/ddframe/rdb/rdb.xsd">
<!-- 配置数据源 -->
<bean name="dataSource" class="com.alibaba.druid.pool.DruidDataSource" init-method="init" destroy-method="close">
<property name="url" value="jdbc:mysql://localhost:3306/beadhouse" />
<property name="username" value="root" />
<property name="password" value="123456" />
</bean>
<rdb:strategy id="tableShardingStrategy" sharding-columns="id" algorithm-class="com.springdemo.utill.MemberSingleKeyTableShardingAlgorithm"/>
<rdb:data-source id="shardingDataSource">
<rdb:sharding-rule data-sources="dataSource">
<rdb:table-rules>
<rdb:table-rule logic-table="bead_information" actual-tables="bead_information_${0..2}" table-strategy="tableShardingStrategy"/>
</rdb:table-rules>
</rdb:sharding-rule>
</rdb:data-source>
<bean id="transactionManager" class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
<property name="dataSource" ref="shardingDataSource" />
</bean>
</beans>
3、将文件引入spring配置文件中。
需要修改几个地方,把sqlSessionFactory和transactionManager原来关联的dataSource统一修改为shardingDataSource(这一步作用就是把数据源全部托管给sharding去管理)
4、实现分表(分库)逻辑,我们的分表逻辑类需要实现SingleKeyTableShardingAlgorithm接口的三个方法doBetweenSharding、doEqualSharding、doInSharding
(取模除数需要按照自己需求改变,我这里分3个表,所以除以3)
import java.util.Collection;
import java.util.LinkedHashSet;
import com.dangdang.ddframe.rdb.sharding.api.ShardingValue;
import com.dangdang.ddframe.rdb.sharding.api.strategy.table.SingleKeyTableShardingAlgorithm;
import com.google.common.collect.Range;
public class MemberSingleKeyTableShardingAlgorithm implements SingleKeyTableShardingAlgorithm<Integer> {
@Override
public Collection<String> doBetweenSharding(Collection<String> tableNames, ShardingValue<Integer> shardingValue) {
Collection<String> result = new LinkedHashSet<String>(tableNames.size());
Range<Integer> range = (Range<Integer>) shardingValue.getValueRange();
for (Integer i = range.lowerEndpoint(); i <= range.upperEndpoint(); i++) {
Integer modValue = i % 3;
String modStr = modValue < 3 ? "" + modValue : modValue.toString();
for (String each : tableNames) {
if (each.endsWith(modStr)) {
result.add(each);
}
}
}
return result;
}
@Override
public String doEqualSharding(Collection<String> tableNames, ShardingValue<Integer> shardingValue) {
Integer modValue = shardingValue.getValue() % 3;
String modStr = modValue < 3 ? "" + modValue : modValue.toString();
for (String each : tableNames) {
if (each.endsWith(modStr)) {
return each;
}
}
throw new IllegalArgumentException();
}
@Override
public Collection<String> doInSharding(Collection<String> tableNames, ShardingValue<Integer> shardingValue) {
Collection<String> result = new LinkedHashSet<String>(tableNames.size());
for (Integer value : shardingValue.getValues()) {
Integer modValue = value % 3;
String modStr = modValue < 3 ? "" + modValue : modValue.toString();
for (String tableName : tableNames) {
if (tableName.endsWith(modStr)) {
result.add(tableName);
}
}
}
return result;
}
}
5、配置完成,可以实现增删改查测试。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持亿速云。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。