温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

BufferedInputStream(缓冲输入流)详解_动力节点Java学院整理

发布时间:2020-08-28 17:08:44 来源:脚本之家 阅读:155 作者:skywang12345 栏目:编程语言

BufferedInputStream 介绍

BufferedInputStream 是缓冲输入流。它继承于FilterInputStream。
BufferedInputStream 的作用是为另一个输入流添加一些功能,例如,提供“缓冲功能”以及支持“mark()标记”和“reset()重置方法”。
BufferedInputStream 本质上是通过一个内部缓冲区数组实现的。例如,在新建某输入流对应的BufferedInputStream后,当我们通过read()读取输入流的数据时,BufferedInputStream会将该输入流的数据分批的填入到缓冲区中。每当缓冲区中的数据被读完之后,输入流会再次填充数据缓冲区;如此反复,直到我们读完输入流数据位置。

BufferedInputStream 函数列表

BufferedInputStream(InputStream in)
BufferedInputStream(InputStream in, int size)

synchronized int   available()
void   close()
synchronized void   mark(int readlimit)
boolean   markSupported()
synchronized int   read()
synchronized int   read(byte[] buffer, int offset, int byteCount)
synchronized void   reset()
synchronized long   skip(long byteCount)

BufferedInputStream 源码分析(基于jdk1.7.40)

package java.io;
import java.util.concurrent.atomic.AtomicReferenceFieldUpdater;

public class BufferedInputStream extends FilterInputStream {

  // 默认的缓冲大小是8192字节
  // BufferedInputStream 会根据“缓冲区大小”来逐次的填充缓冲区;
  // 即,BufferedInputStream填充缓冲区,用户读取缓冲区,读完之后,BufferedInputStream会再次填充缓冲区。如此循环,直到读完数据...
  private static int defaultBufferSize = 8192;

  // 缓冲数组
  protected volatile byte buf[];

  // 缓存数组的原子更新器。
  // 该成员变量与buf数组的volatile关键字共同组成了buf数组的原子更新功能实现,
  // 即,在多线程中操作BufferedInputStream对象时,buf和bufUpdater都具有原子性(不同的线程访问到的数据都是相同的)
  private static final
    AtomicReferenceFieldUpdater<BufferedInputStream, byte[]> bufUpdater =
    AtomicReferenceFieldUpdater.newUpdater
    (BufferedInputStream.class, byte[].class, "buf");

  // 当前缓冲区的有效字节数。
  // 注意,这里是指缓冲区的有效字节数,而不是输入流中的有效字节数。
  protected int count;

  // 当前缓冲区的位置索引
  // 注意,这里是指缓冲区的位置索引,而不是输入流中的位置索引。
  protected int pos;

  // 当前缓冲区的标记位置
  // markpos和reset()配合使用才有意义。操作步骤:
  // (01) 通过mark() 函数,保存pos的值到markpos中。
  // (02) 通过reset() 函数,会将pos的值重置为markpos。接着通过read()读取数据时,就会从mark()保存的位置开始读取。
  protected int markpos = -1;

  // marklimit是标记的最大值。
  // 关于marklimit的原理,我们在后面的fill()函数分析中会详细说明。这对理解BufferedInputStream相当重要。
  protected int marklimit;

  // 获取输入流
  private InputStream getInIfOpen() throws IOException {
    InputStream input = in;
    if (input == null)
      throw new IOException("Stream closed");
    return input;
  }

  // 获取缓冲
  private byte[] getBufIfOpen() throws IOException {
    byte[] buffer = buf;
    if (buffer == null)
      throw new IOException("Stream closed");
    return buffer;
  }

  // 构造函数:新建一个缓冲区大小为8192的BufferedInputStream
  public BufferedInputStream(InputStream in) {
    this(in, defaultBufferSize);
  }

  // 构造函数:新建指定缓冲区大小的BufferedInputStream
  public BufferedInputStream(InputStream in, int size) {
    super(in);
    if (size <= 0) {
      throw new IllegalArgumentException("Buffer size <= 0");
    }
    buf = new byte[size];
  }

  // 从“输入流”中读取数据,并填充到缓冲区中。
  // 后面会对该函数进行详细说明!
  private void fill() throws IOException {
    byte[] buffer = getBufIfOpen();
    if (markpos < 0)
      pos = 0;      /* no mark: throw away the buffer */
    else if (pos >= buffer.length) /* no room left in buffer */
      if (markpos > 0) { /* can throw away early part of the buffer */
        int sz = pos - markpos;
        System.arraycopy(buffer, markpos, buffer, 0, sz);
        pos = sz;
        markpos = 0;
      } else if (buffer.length >= marklimit) {
        markpos = -1;  /* buffer got too big, invalidate mark */
        pos = 0;    /* drop buffer contents */
      } else {      /* grow buffer */
        int nsz = pos * 2;
        if (nsz > marklimit)
          nsz = marklimit;
        byte nbuf[] = new byte[nsz];
        System.arraycopy(buffer, 0, nbuf, 0, pos);
        if (!bufUpdater.compareAndSet(this, buffer, nbuf)) {
          throw new IOException("Stream closed");
        }
        buffer = nbuf;
      }
    count = pos;
    int n = getInIfOpen().read(buffer, pos, buffer.length - pos);
    if (n > 0)
      count = n + pos;
  }

  // 读取下一个字节
  public synchronized int read() throws IOException {
    // 若已经读完缓冲区中的数据,则调用fill()从输入流读取下一部分数据来填充缓冲区
    if (pos >= count) {
      fill();
      if (pos >= count)
        return -1;
    }
    // 从缓冲区中读取指定的字节
    return getBufIfOpen()[pos++] & 0xff;
  }

  // 将缓冲区中的数据写入到字节数组b中。off是字节数组b的起始位置,len是写入长度
  private int read1(byte[] b, int off, int len) throws IOException {
    int avail = count - pos;
    if (avail <= 0) {
      // 加速机制。
      // 如果读取的长度大于缓冲区的长度 并且没有markpos,
      // 则直接从原始输入流中进行读取,从而避免无谓的COPY(从原始输入流至缓冲区,读取缓冲区全部数据,清空缓冲区, 
      // 重新填入原始输入流数据)
      if (len >= getBufIfOpen().length && markpos < 0) {
        return getInIfOpen().read(b, off, len);
      }
      // 若已经读完缓冲区中的数据,则调用fill()从输入流读取下一部分数据来填充缓冲区
      fill();
      avail = count - pos;
      if (avail <= 0) return -1;
    }
    int cnt = (avail < len) ? avail : len;
    System.arraycopy(getBufIfOpen(), pos, b, off, cnt);
    pos += cnt;
    return cnt;
  }

  // 将缓冲区中的数据写入到字节数组b中。off是字节数组b的起始位置,len是写入长度
  public synchronized int read(byte b[], int off, int len)
    throws IOException
  {
    getBufIfOpen(); // Check for closed stream
    if ((off | len | (off + len) | (b.length - (off + len))) < 0) {
      throw new IndexOutOfBoundsException();
    } else if (len == 0) {
      return 0;
    }

    // 读取到指定长度的数据才返回
    int n = 0;
    for (;;) {
      int nread = read1(b, off + n, len - n);
      if (nread <= 0)
        return (n == 0) ? nread : n;
      n += nread;
      if (n >= len)
        return n;
      // if not closed but no bytes available, return
      InputStream input = in;
      if (input != null && input.available() <= 0)
        return n;
    }
  }

  // 忽略n个字节
  public synchronized long skip(long n) throws IOException {
    getBufIfOpen(); // Check for closed stream
    if (n <= 0) {
      return 0;
    }
    long avail = count - pos;

    if (avail <= 0) {
      // If no mark position set then don't keep in buffer
      if (markpos <0)
        return getInIfOpen().skip(n);

      // Fill in buffer to save bytes for reset
      fill();
      avail = count - pos;
      if (avail <= 0)
        return 0;
    }

    long skipped = (avail < n) ? avail : n;
    pos += skipped;
    return skipped;
  }

  // 下一个字节是否存可读
  public synchronized int available() throws IOException {
    int n = count - pos;
    int avail = getInIfOpen().available();
    return n > (Integer.MAX_VALUE - avail)
          ? Integer.MAX_VALUE
          : n + avail;
  }

  // 标记“缓冲区”中当前位置。
  // readlimit是marklimit,关于marklimit的作用,参考后面的说明。
  public synchronized void mark(int readlimit) {
    marklimit = readlimit;
    markpos = pos;
  }

  // 将“缓冲区”中当前位置重置到mark()所标记的位置
  public synchronized void reset() throws IOException {
    getBufIfOpen(); // Cause exception if closed
    if (markpos < 0)
      throw new IOException("Resetting to invalid mark");
    pos = markpos;
  }

  public boolean markSupported() {
    return true;
  }

  // 关闭输入流
  public void close() throws IOException {
    byte[] buffer;
    while ( (buffer = buf) != null) {
      if (bufUpdater.compareAndSet(this, buffer, null)) {
        InputStream input = in;
        in = null;
        if (input != null)
          input.close();
        return;
      }
      // Else retry in case a new buf was CASed in fill()
    }
  }
}

说明:

要想读懂BufferedInputStream的源码,就要先理解它的思想。BufferedInputStream的作用是为其它输入流提供缓冲功能。创建BufferedInputStream时,我们会通过它的构造函数指定某个输入流为参数。BufferedInputStream会将该输入流数据分批读取,每次读取一部分到缓冲中;操作完缓冲中的这部分数据之后,再从输入流中读取下一部分的数据。
为什么需要缓冲呢?原因很简单,效率问题!缓冲中的数据实际上是保存在内存中,而原始数据可能是保存在硬盘或NandFlash等存储介质中;而我们知道,从内存中读取数据的速度比从硬盘读取数据的速度至少快10倍以上。
那干嘛不干脆一次性将全部数据都读取到缓冲中呢?第一,读取全部的数据所需要的时间可能会很长。第二,内存价格很贵,容量不像硬盘那么大。

下面,我就BufferedInputStream中最重要的函数fill()进行说明。其它的函数很容易理解,我就不详细介绍了,大家可以参考源码中的注释进行理解。

fill() 源码如下:

private void fill() throws IOException {
  byte[] buffer = getBufIfOpen();
  if (markpos < 0)
    pos = 0;
  else if (pos >= buffer.length) {
    if (markpos > 0) { /* can throw away early part of the buffer */
      int sz = pos - markpos;
      System.arraycopy(buffer, markpos, buffer, 0, sz);
      pos = sz;
      markpos = 0;
    } else if (buffer.length >= marklimit) {
      markpos = -1;  /* buffer got too big, invalidate mark */
      pos = 0;    /* drop buffer contents */
    } else {      /* grow buffer */
      int nsz = pos * 2;
      if (nsz > marklimit)
        nsz = marklimit;
      byte nbuf[] = new byte[nsz];
      System.arraycopy(buffer, 0, nbuf, 0, pos);
      if (!bufUpdater.compareAndSet(this, buffer, nbuf)) {
        // Can't replace buf if there was an async close.
        // Note: This would need to be changed if fill()
        // is ever made accessible to multiple threads.
        // But for now, the only way CAS can fail is via close.
        // assert buf == null;
        throw new IOException("Stream closed");
      }
      buffer = nbuf;
    }
  }

  count = pos;
  int n = getInIfOpen().read(buffer, pos, buffer.length - pos);
  if (n > 0)
    count = n + pos;
}

根据fill()中的if...else...,下面我们将fill分为5种情况进行说明。

 情况1:读取完buffer中的数据,并且buffer没有被标记

执行流程如下,
(01) read() 函数中调用 fill()
(02) fill() 中的 if (markpos < 0) ...
为了方便分析,我们将这种情况下fill()执行的操作等价于以下代码:

private void fill() throws IOException {
  byte[] buffer = getBufIfOpen();
  if (markpos < 0)
    pos = 0;

  count = pos;
  int n = getInIfOpen().read(buffer, pos, buffer.length - pos);
  if (n > 0)
    count = n + pos;
}

说明:

这种情况发生的情况是 — — 输入流中有很长的数据,我们每次从中读取一部分数据到buffer中进行操作。每次当我们读取完buffer中的数据之后,并且此时输入流没有被标记;那么,就接着从输入流中读取下一部分的数据到buffer中。
其中,判断是否读完buffer中的数据,是通过 if (pos >= count) 来判断的;
          判断输入流有没有被标记,是通过 if (markpos < 0) 来判断的。

理解这个思想之后,我们再对这种情况下的fill()的代码进行分析,就特别容易理解了。
(01) if (markpos < 0) 它的作用是判断“输入流是否被标记”。若被标记,则markpos大于/等于0;否则markpos等于-1。
(02) 在这种情况下:通过getInIfOpen()获取输入流,然后接着从输入流中读取buffer.length个字节到buffer中。
(03) count = n + pos; 这是根据从输入流中读取的实际数据的多少,来更新buffer中数据的实际大小。

 情况2:读取完buffer中的数据,buffer的标记位置>0,并且buffer中没有多余的空间

执行流程如下,
(01) read() 函数中调用 fill()
(02) fill() 中的 else if (pos >= buffer.length) ...
(03) fill() 中的 if (markpos > 0) ...

为了方便分析,我们将这种情况下fill()执行的操作等价于以下代码:

private void fill() throws IOException {
  byte[] buffer = getBufIfOpen();
  if (markpos >= 0 && pos >= buffer.length) {
    if (markpos > 0) {
      int sz = pos - markpos;
      System.arraycopy(buffer, markpos, buffer, 0, sz);
      pos = sz;
      markpos = 0;
    }
  }

  count = pos;
  int n = getInIfOpen().read(buffer, pos, buffer.length - pos);
  if (n > 0)
    count = n + pos;
}

说明:

这种情况发生的情况是 — — 输入流中有很长的数据,我们每次从中读取一部分数据到buffer中进行操作。当我们读取完buffer中的数据之后,并且此时输入流存在标记时;那么,就发生情况2。此时,我们要保留“被标记位置”到“buffer末尾”的数据,然后再从输入流中读取下一部分的数据到buffer中。
其中,判断是否读完buffer中的数据,是通过 if (pos >= count) 来判断的;
          判断输入流有没有被标记,是通过 if (markpos < 0) 来判断的。
          判断buffer中没有多余的空间,是通过 if (pos >= buffer.length) 来判断的。

理解这个思想之后,我们再对这种情况下的fill()代码进行分析,就特别容易理解了。
(01) int sz = pos - markpos; 作用是“获取‘被标记位置'到‘buffer末尾'”的数据长度。
(02) System.arraycopy(buffer, markpos, buffer, 0, sz); 作用是“将buffer中从markpos开始的数据”拷贝到buffer中(从位置0开始填充,填充长度是sz)。接着,将sz赋值给pos,即pos就是“被标记位置”到“buffer末尾”的数据长度。
(03) int n = getInIfOpen().read(buffer, pos, buffer.length - pos); 从输入流中读取出“buffer.length - pos”的数据,然后填充到buffer中。
(04) 通过第(02)和(03)步组合起来的buffer,就是包含了“原始buffer被标记位置到buffer末尾”的数据,也包含了“从输入流中新读取的数据”。

注意:执行过情况2之后,markpos的值由“大于0”变成了“等于0”!

情况3:读取完buffer中的数据,buffer被标记位置=0,buffer中没有多余的空间,并且buffer.length>=marklimit

执行流程如下,
(01) read() 函数中调用 fill()
(02) fill() 中的 else if (pos >= buffer.length) ...
(03) fill() 中的 else if (buffer.length >= marklimit) ...

为了方便分析,我们将这种情况下fill()执行的操作等价于以下代码:

private void fill() throws IOException {
  byte[] buffer = getBufIfOpen();
  if (markpos >= 0 && pos >= buffer.length) {
    if ( (markpos <= 0) && (buffer.length >= marklimit) ) {
      markpos = -1;  /* buffer got too big, invalidate mark */
      pos = 0;    /* drop buffer contents */
    }
  }

  count = pos;
  int n = getInIfOpen().read(buffer, pos, buffer.length - pos);
  if (n > 0)
    count = n + pos;
}

说明:这种情况的处理非常简单。首先,就是“取消标记”,即 markpos = -1;然后,设置初始化位置为0,即pos=0;最后,再从输入流中读取下一部分数据到buffer中。

情况4:读取完buffer中的数据,buffer被标记位置=0,buffer中没有多余的空间,并且buffer.length<marklimit

执行流程如下,
(01) read() 函数中调用 fill()
(02) fill() 中的 else if (pos >= buffer.length) ...
(03) fill() 中的 else { int nsz = pos * 2; ... }

为了方便分析,我们将这种情况下fill()执行的操作等价于以下代码:

private void fill() throws IOException {
  byte[] buffer = getBufIfOpen();
  if (markpos >= 0 && pos >= buffer.length) {
    if ( (markpos <= 0) && (buffer.length < marklimit) ) {
      int nsz = pos * 2;
      if (nsz > marklimit)
        nsz = marklimit;
      byte nbuf[] = new byte[nsz];
      System.arraycopy(buffer, 0, nbuf, 0, pos);
      if (!bufUpdater.compareAndSet(this, buffer, nbuf)) {
        throw new IOException("Stream closed");
      }
      buffer = nbuf;
    }
  }

  count = pos;
  int n = getInIfOpen().read(buffer, pos, buffer.length - pos);
  if (n > 0)
    count = n + pos;
}

说明:

这种情况的处理非常简单。
(01) 新建一个字节数组nbuf。nbuf的大小是“pos*2”和“marklimit”中较小的那个数。

int nsz = pos * 2;
if (nsz > marklimit)
  nsz = marklimit;
byte nbuf[] = new byte[nsz];

(02) 接着,将buffer中的数据拷贝到新数组nbuf中。通过System.arraycopy(buffer, 0, nbuf, 0, pos)
(03) 最后,从输入流读取部分新数据到buffer中。通过getInIfOpen().read(buffer, pos, buffer.length - pos);
注意:在这里,我们思考一个问题,“为什么需要marklimit,它的存在到底有什么意义?”我们结合“情况2”、“情况3”、“情况4”的情况来分析。

假设,marklimit是无限大的,而且我们设置了markpos。当我们从输入流中每读完一部分数据并读取下一部分数据时,都需要保存markpos所标记的数据;这就意味着,我们需要不断执行情况4中的操作,要将buffer的容量扩大……随着读取次数的增多,buffer会越来越大;这会导致我们占据的内存越来越大。所以,我们需要给出一个marklimit;当buffer>=marklimit时,就不再保存markpos的值了。

情况5:除了上面4种情况之外的情况

执行流程如下,
(01) read() 函数中调用 fill()
(02) fill() 中的 count = pos...

为了方便分析,我们将这种情况下fill()执行的操作等价于以下代码:

private void fill() throws IOException {
  byte[] buffer = getBufIfOpen();

  count = pos;
  int n = getInIfOpen().read(buffer, pos, buffer.length - pos);
  if (n > 0)
    count = n + pos;
}

说明:这种情况的处理非常简单。直接从输入流读取部分新数据到buffer中。

示例代码

关于BufferedInputStream中API的详细用法,参考示例代码(BufferedInputStreamTest.java):

import java.io.BufferedInputStream;
import java.io.ByteArrayInputStream;
import java.io.File;
import java.io.InputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.FileNotFoundException;
import java.lang.SecurityException;

/**
 * BufferedInputStream 测试程序
 *
 * @author skywang
 */
public class BufferedInputStreamTest {

  private static final int LEN = 5;

  public static void main(String[] args) {
    testBufferedInputStream() ;
  }

  /**
   * BufferedInputStream的API测试函数
   */
  private static void testBufferedInputStream() {

    // 创建BufferedInputStream字节流,内容是ArrayLetters数组
    try {
      File file = new File("bufferedinputstream.txt");
      InputStream in =
         new BufferedInputStream(
           new FileInputStream(file), 512);

      // 从字节流中读取5个字节。“abcde”,a对应0x61,b对应0x62,依次类推...
      for (int i=0; i<LEN; i++) {
        // 若能继续读取下一个字节,则读取下一个字节
        if (in.available() >= 0) {
          // 读取“字节流的下一个字节”
          int tmp = in.read();
          System.out.printf("%d : 0x%s\n", i, Integer.toHexString(tmp));
        }
      }

      // 若“该字节流”不支持标记功能,则直接退出
      if (!in.markSupported()) {
        System.out.println("make not supported!");
        return ;
      }
       
      // 标记“当前索引位置”,即标记第6个位置的元素--“f”
      // 1024对应marklimit
      in.mark(1024);

      // 跳过22个字节。
      in.skip(22);

      // 读取5个字节
      byte[] buf = new byte[LEN];
      in.read(buf, 0, LEN);
      // 将buf转换为String字符串。
      String str1 = new String(buf);
      System.out.printf("str1=%s\n", str1);

      // 重置“输入流的索引”为mark()所标记的位置,即重置到“f”处。
      in.reset();
      // 从“重置后的字节流”中读取5个字节到buf中。即读取“fghij”
      in.read(buf, 0, LEN);
      // 将buf转换为String字符串。
      String str2 = new String(buf);
      System.out.printf("str2=%s\n", str2);

      in.close();
    } catch (FileNotFoundException e) {
      e.printStackTrace();
    } catch (SecurityException e) {
      e.printStackTrace();
    } catch (IOException e) {
      e.printStackTrace();
    }
  }
}

程序中读取的bufferedinputstream.txt的内容如下:

abcdefghijklmnopqrstuvwxyz
0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

运行结果:

0 : 0x61
1 : 0x62
2 : 0x63
3 : 0x64
4 : 0x65
str1=01234
str2=fghij

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持亿速云。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI