温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python几个__开头的变量的使用方法

发布时间:2020-08-24 14:49:44 来源:亿速云 阅读:245 作者:Leah 栏目:编程语言

今天就跟大家聊聊有关python几个__开头的变量的使用方法,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

在Python中有许多以__开头的变量,这些变量是什么意思呢?这里介绍下[__dir__, __slots__, __weakref__,__missing__, __contains__]

__dir__ -> 看个小例子就知道了

In [1]: class T(object):
   ...:     pass
   ...:
In [2]: t = T()
In [3]: t.<Tab>

啥也没有...

In [4]: class T2(object):
   ...:     def __dir__(self):
   ...:         return ['a', 'b']
   ...:
In [5]: t = T2()
In [6]: t.
t.a  t.b
In [7]: dir(t)
Out[7]: ['a', 'b']

看出来了把, 不解释, 但是这个__dir__是相对于类的实例有效果的.

__slots__

这个在我初学python的时候就被模糊了, 原来的理解是它的出现替代了__dict__,也就是说你只能给__slots__ 这个变量列表项的属性赋值. 对外的接口减少了,也安全了. 后来看了这篇Saving 9 GB of RAM with Python’s slots. 好久不做运维了,在生产环境究竟怎么样我无法定论, 也提到了,在对象实例很多的时候他能帮助减少内存, 详见https://www.safaribooksonline.com/library/view/python-cookbook-3rd/9781449357337/ch08s04.html. 这里来个小实验(在Hacker News也被讨论过https://news.ycombinator.com/item?id=6750187)

代码例子(我对细节做注释):

# coding=utf-8
import sys
from itertools import starmap, product
class SlotTest(object):
    # __slots__ = ['x', 'y', 'z'] 主要对比去掉这句和包含这句程序内存占用
    def __init__(self, x, y, z):
            self.x = x
                    self.y = y
                            self.z = z
    def __str__(self):
            return "{} {} {}".format(self.x, self.y, self.z)
p = product(range(10000), range(20), [4]) # 创建0-1000 & 0-20 & 4 的笛卡尔积
a = list(starmap(SlotTest, p)) # 相当于对每个SlotTest实例化,实例化的格式是p的长度
print a[0]
sys.stdin.read(1)

结果对比:

$pmap -x `ps -ef|grep test_slot.py|grep -v grep|awk '{print $2}'`|grep total # 未使用__slots__
  total kB          103496   76480   73728
$pmap -x `ps -ef|grep test_slot.py|grep -v grep|awk '{print $2}'`|grep total # 使用了__slots__
  total kB           49960   22888   20136

结果很明显,内存占用减少了很多...

__weakref__ 弱引用

首先先说下weakref: 弱引用,与强引用相对,是指不能确保其引用的对象不会被垃圾回收器回收的引用。一个对象若只被弱引用所引用,则被认为是不可访问(或弱可访问)的,并因此可能在任何时刻被回收. 在Python中,当一个对象的引用数目为0的时候,才会被从内存中回收. 但是被循环引用呢?

In [1]: import weakref
In [2]: import gc
In [3]: class Obj(object):
   ...:     def a(self):
   ...:         return 1
   ...:
In [4]: obj = Obj()
In [5]: s = obj
In [6]: gc.collect() # 不可达引用对象的数量
Out[6]: 3
In [7]: print s is obj
True
In [8]: obj = 1 # 最初的被引用的对象改变了.
In [9]: gc.collect()
Out[9]: 0
In [10]: s is None # s还是指向了Obj 引用计数为1
Out[10]: False
In [11]: s
Out[11]: <__main__.Obj at 0x2b36510>
----华丽的分割一下
In [12]: obj = Obj()
In [13]: r = weakref.ref(obj) # 让obj变成那个弱引用
In [14]: gc.collect()
Out[14]: 211
In [15]: r() is obj
True
In [16]: obj = 1
In [17]: gc.collect()
Out[17]: 0
In [18]: r() is None # 弱引用计数器没有增加,所以当obj不在引用Obj的时候,Obj对象就被释放了
Out[18]: True

好吧, 我的总结是弱引用是个好东西, 但是加了__slots__就不支持弱引用了. 所以需要__weakref__

In [9]: class T3(object):
   ...:     __slots__ = []
      ...:
In [10]: class T4(object):
   ....:     __slots__ = '__weakref__'  # 这样就支持了weakref
      ....:
In [11]:  import weakref
In [12]: t3 = T3()
In [13]: t4 = T4()
In [14]: weakref.ref(t3)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-14-bdb7ab7ac3bc> in <module>()
----> 1 weakref.ref(t3)
TypeError: cannot create weak reference to 'T3' object
In [15]: weakref.ref(t4)
Out[15]: <weakref at 0x2766f70; to 'T4' at 0x2586fd8>

__contains__ 判断某值 in/not in 实例

In [1]: class NewList(object):
   ...:     def __init(self, values):
   ...:         self.values = values
   ...:     def __contains__(self, value):
   ...:         return value in self.values
   ...:
In [2]: l = NewList([1, 2, 3, 4])
In [3]: 4 in l
Out[3]: True
In [4]: 10 in l
Out[4]: False
__missing__

最初看这个特殊方法是看python标准库的源码的时候(collections#L421):

class Counter(dict):
    ...
    def __missing__(self, key):
        'The count of elements not in the Counter is zero.'
        # Needed so that self[missing_item] does not raise KeyError
        return 0

什么意思呢?

In [6]: c = collections.Counter({'a':1})
In [7]: c['b'] # 没有键的count设置默认值0
Out[7]: 0

看完上述内容,你们对python几个__开头的变量的使用方法有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI