这篇文章主要讲解了“怎么使用Linux平台下的压力测试工具stress-ng”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Linux平台下的压力测试工具stress-ng”吧!
安装很简单,在CentOS下,通过yum -y install stress-ng即可安装此工具.
安装成功后,执行man stress-ng可查看该工具的帮助信息.
NAME
stress-ng - a tool to load and stress a computer system
stress-ng是计算机系统进行压力测试的工具.
SYNOPSIS
stress-ng [OPTION [ARG]] ...
使用方法:stress-ng [OPTION [ARG]] ...
DESCRIPTION
stress-ng will stress test a computer system in various selectable ways. It was
designed to exercise various physical subsystems of a computer as well as the var‐
ious operating system kernel interfaces. stress-ng also has a wide range of CPU
specific stress tests that exercise floating point, integer, bit manipulation and
control flow.
stress-ng was originally intended to make a machine work hard and trip hardware
issues such as thermal overruns as well as operating system bugs that only occur
when a system is being thrashed hard. Use stress-ng with caution as some of the
tests can make a system run hot on poorly designed hardware and also can cause
excessive system thrashing which may be difficult to stop.
stress-ng can also measure test throughput rates; this can be useful to observe
performance changes across different operating system releases or types of hard‐
ware. However, it has never been intended to be used as a precise benchmark test
suite, so do NOT use it in this manner.
Running stress-ng with root privileges will adjust out of memory settings on Linux
systems to make the stressors unkillable in low memory situations, so use this
judiciously. With the appropriate privilege, stress-ng can allow the ionice class
and ionice levels to be adjusted, again, this should be used with care.
One can specify the number of processes to invoke per type of stress test; speci‐
fying a negative or zero value will select the number of processors available as
defined by sysconf(_SC_NPROCESSORS_CONF).
stress-ng提供了N中途径对系统进行测试.该工具可运行计算机的各种物理子系统(如CPU/内存/网络等)
以及各种OS内核接口.stress-ng有大量的CPU压力测试方法,包括测试浮点数/整数/位运算和控制流程等.
stress-ng的最初目的是给机器加压,通过使系统过载来发现OS的bug.要注意的是,stress-ng在设计不良
的系统中运行可能会系统宕机.
OPTIONS
General stress-ng control options:
...
详细可参考stress-ng手册.
EXAMPLES
使用样例
stress-ng --vm 8 --vm-bytes 80% -t 1h
run 8 virtual memory stressors that combined use 80% of the available mem‐
ory for 1 hour. Thus each stressor uses 10% of the available memory.
执行8个虚拟的内存压测器,合计使用80%的可用内存,持续时间1小时,每个压测器约10%的可用内存.
stress-ng --cpu 4 --io 2 --vm 1 --vm-bytes 1G --timeout 60s
runs for 60 seconds with 4 cpu stressors, 2 io stressors and 1 vm stressor
using 1GB of virtual memory.
stress-ng --iomix 2 --iomix-bytes 10% -t 10m
runs 2 instances of the mixed I/O stressors using a total of 10% of the
available file system space for 10 minutes. Each stressor will use 5% of
the available file system space.
stress-ng --cpu 8 --cpu-ops 800000
runs 8 cpu stressors and stops after 800000 bogo operations.
stress-ng --sequential 2 --timeout 2m --metrics
run 2 simultaneous instances of all the stressors sequentially one by one,
each for 2 minutes and summarise with performance metrics at the end.
stress-ng --cpu 4 --cpu-method fft --cpu-ops 10000 --metrics-brief
run 4 FFT cpu stressors, stop after 10000 bogo operations and produce a
summary just for the FFT results.
stress-ng --cpu 0 --cpu-method all -t 1h
run cpu stressors on all online CPUs working through all the available CPU
stressors for 1 hour.
stress-ng --all 4 --timeout 5m
run 4 instances of all the stressors for 5 minutes.
stress-ng --random 64
run 64 stressors that are randomly chosen from all the available stressors.
stress-ng --cpu 64 --cpu-method all --verify -t 10m --metrics-brief
run 64 instances of all the different cpu stressors and verify that the
computations are correct for 10 minutes with a bogo operations summary at
the end.
stress-ng --sequential 0 -t 10m
run all the stressors one by one for 10 minutes, with the number of
instances of each stressor matching the number of online CPUs.
stress-ng --sequential 8 --class io -t 5m --times
run all the stressors in the io class one by one for 5 minutes each, with 8
instances of each stressor running concurrently and show overall time util‐
isation statistics at the end of the run.
stress-ng --all 0 --maximize --aggressive
run all the stressors (1 instance of each per CPU) simultaneously, maximize
the settings (memory sizes, file allocations, etc.) and select the most
demanding/aggressive options.
stress-ng --random 32 -x numa,hdd,key
run 32 randomly selected stressors and exclude the numa, hdd and key stres‐
sors
stress-ng --sequential 4 --class vm --exclude bigheap,brk,stack
run 4 instances of the VM stressors one after each other, excluding the
bigheap, brk and stack stressors
stress-ng --taskset 0,2-3 --cpu 3
run 3 instances of the CPU stressor and pin them to CPUs 0, 2 and 3.
感谢各位的阅读,以上就是“怎么使用Linux平台下的压力测试工具stress-ng”的内容了,经过本文的学习后,相信大家对怎么使用Linux平台下的压力测试工具stress-ng这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:http://blog.itpub.net/6906/viewspace-2656712/