这篇文章主要讲解了“PostgreSQL中GetSnapshotData的处理过程是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“PostgreSQL中GetSnapshotData的处理过程是什么”吧!
全局/静态变量
/* * Currently registered Snapshots. Ordered in a heap by xmin, so that we can * quickly find the one with lowest xmin, to advance our MyPgXact->xmin. * 当前已注册的快照. * 按照xmin堆排序,这样我们可以快速找到xmin最小的一个,从而可以设置MyPgXact->xmin。 */ static int xmin_cmp(const pairingheap_node *a, const pairingheap_node *b, void *arg); static pairingheap RegisteredSnapshots = {&xmin_cmp, NULL, NULL}; /* first GetTransactionSnapshot call in a transaction? */ bool FirstSnapshotSet = false; /* * Remember the serializable transaction snapshot, if any. We cannot trust * FirstSnapshotSet in combination with IsolationUsesXactSnapshot(), because * GUC may be reset before us, changing the value of IsolationUsesXactSnapshot. * 如存在则记下serializable事务快照. * 我们不能信任与IsolationUsesXactSnapshot()结合使用的FirstSnapshotSet, * 因为GUC可能会在我们之前重置,改变IsolationUsesXactSnapshot的值。 */ static Snapshot FirstXactSnapshot = NULL; /* * CurrentSnapshot points to the only snapshot taken in transaction-snapshot * mode, and to the latest one taken in a read-committed transaction. * SecondarySnapshot is a snapshot that's always up-to-date as of the current * instant, even in transaction-snapshot mode. It should only be used for * special-purpose code (say, RI checking.) CatalogSnapshot points to an * MVCC snapshot intended to be used for catalog scans; we must invalidate it * whenever a system catalog change occurs. * CurrentSnapshot指向在transaction-snapshot模式下获取的唯一快照/在read-committed事务中获取的最新快照。 * SecondarySnapshot是即使在transaction-snapshot模式下,也总是最新的快照。它应该只用于特殊用途码(例如,RI检查)。 * CatalogSnapshot指向打算用于catalog扫描的MVCC快照; * 无论何时发生system catalog更改,我们都必须马上使其失效。 * * These SnapshotData structs are static to simplify memory allocation * (see the hack in GetSnapshotData to avoid repeated malloc/free). * 这些SnapshotData结构体是静态的便于简化内存分配. * (可以回过头来看GetSnapshotData函数如何避免重复的malloc/free) */ static SnapshotData CurrentSnapshotData = {HeapTupleSatisfiesMVCC}; static SnapshotData SecondarySnapshotData = {HeapTupleSatisfiesMVCC}; SnapshotData CatalogSnapshotData = {HeapTupleSatisfiesMVCC}; /* Pointers to valid snapshots */ //指向有效的快照 static Snapshot CurrentSnapshot = NULL; static Snapshot SecondarySnapshot = NULL; static Snapshot CatalogSnapshot = NULL; static Snapshot HistoricSnapshot = NULL; /* * These are updated by GetSnapshotData. We initialize them this way * for the convenience of TransactionIdIsInProgress: even in bootstrap * mode, we don't want it to say that BootstrapTransactionId is in progress. * 这些变量通过函数GetSnapshotData更新. * 为了便于TransactionIdIsInProgress,以这种方式初始化它们: * 即使在引导模式下,我们也不希望表示BootstrapTransactionId正在进行中。 * * RecentGlobalXmin and RecentGlobalDataXmin are initialized to * InvalidTransactionId, to ensure that no one tries to use a stale * value. Readers should ensure that it has been set to something else * before using it. * RecentGlobalXmin和RecentGlobalDataXmin初始化为InvalidTransactionId, * 以确保没有人尝试使用过时的值。 * 在使用它之前,读取进程应确保它已经被设置为其他值。 */ TransactionId TransactionXmin = FirstNormalTransactionId; TransactionId RecentXmin = FirstNormalTransactionId; TransactionId RecentGlobalXmin = InvalidTransactionId; TransactionId RecentGlobalDataXmin = InvalidTransactionId; /* (table, ctid) => (cmin, cmax) mapping during timetravel */ static HTAB *tuplecid_data = NULL;
MyPgXact
当前的事务信息.
/* * Flags for PGXACT->vacuumFlags * PGXACT->vacuumFlags标记 * * Note: If you modify these flags, you need to modify PROCARRAY_XXX flags * in src/include/storage/procarray.h. * 注意:如果修改了这些标记,需要更新src/include/storage/procarray.h中的PROCARRAY_XXX标记 * * PROC_RESERVED may later be assigned for use in vacuumFlags, but its value is * used for PROCARRAY_SLOTS_XMIN in procarray.h, so GetOldestXmin won't be able * to match and ignore processes with this flag set. * PROC_RESERVED可能在接下来分配给vacuumFlags使用, * 但是它在procarray.h中用于标识PROCARRAY_SLOTS_XMIN, * 因此GetOldestXmin不能匹配和忽略使用此标记的进程. */ //是否auto vacuum worker? #define PROC_IS_AUTOVACUUM 0x01 /* is it an autovac worker? */ //正在运行lazy vacuum #define PROC_IN_VACUUM 0x02 /* currently running lazy vacuum */ //正在运行analyze #define PROC_IN_ANALYZE 0x04 /* currently running analyze */ //只能通过auto vacuum设置 #define PROC_VACUUM_FOR_WRAPAROUND 0x08 /* set by autovac only */ //在事务外部正在执行逻辑解码 #define PROC_IN_LOGICAL_DECODING 0x10 /* currently doing logical * decoding outside xact */ //保留用于procarray #define PROC_RESERVED 0x20 /* reserved for procarray */ /* flags reset at EOXact */ //在EOXact时用于重置标记的MASK #define PROC_VACUUM_STATE_MASK \ (PROC_IN_VACUUM | PROC_IN_ANALYZE | PROC_VACUUM_FOR_WRAPAROUND) /* * Prior to PostgreSQL 9.2, the fields below were stored as part of the * PGPROC. However, benchmarking revealed that packing these particular * members into a separate array as tightly as possible sped up GetSnapshotData * considerably on systems with many CPU cores, by reducing the number of * cache lines needing to be fetched. Thus, think very carefully before adding * anything else here. */ typedef struct PGXACT { //当前的顶层事务ID(非子事务) //出于优化的目的,只读事务并不会分配事务号(xid = 0) TransactionId xid; /* id of top-level transaction currently being * executed by this proc, if running and XID * is assigned; else InvalidTransactionId */ //在启动事务时,当前正在执行的最小事务号XID,但不包括LAZY VACUUM //vacuum不能清除删除事务号xid >= xmin的元组 TransactionId xmin; /* minimal running XID as it was when we were * starting our xact, excluding LAZY VACUUM: * vacuum must not remove tuples deleted by * xid >= xmin ! */ //vacuum相关的标记 uint8 vacuumFlags; /* vacuum-related flags, see above */ bool overflowed; bool delayChkpt; /* true if this proc delays checkpoint start; * previously called InCommit */ uint8 nxids; } PGXACT; extern PGDLLIMPORT struct PGXACT *MyPgXact;
Snapshot
SnapshotData结构体指针,SnapshotData结构体可表达的信息囊括了所有可能的快照.
有以下几种不同类型的快照:
1.常规的MVCC快照
2.在恢复期间的MVCC快照(处于Hot-Standby模式)
3.在逻辑解码过程中使用的历史MVCC快照
4.作为参数传递给HeapTupleSatisfiesDirty()函数的快照
5.作为参数传递给HeapTupleSatisfiesNonVacuumable()函数的快照
6.用于在没有成员访问情况下SatisfiesAny、Toast和Self的快照
//SnapshotData结构体指针 typedef struct SnapshotData *Snapshot; //无效的快照 #define InvalidSnapshot ((Snapshot) NULL) /* * We use SnapshotData structures to represent both "regular" (MVCC) * snapshots and "special" snapshots that have non-MVCC semantics. * The specific semantics of a snapshot are encoded by the "satisfies" * function. * 我们使用SnapshotData结构体表示"regular" (MVCC) snapshots和具有非MVCC语义的"special" snapshots。 */ //测试函数 typedef bool (*SnapshotSatisfiesFunc) (HeapTuple htup, Snapshot snapshot, Buffer buffer); //常见的有: //HeapTupleSatisfiesMVCC:判断元组对某一快照版本是否有效 //HeapTupleSatisfiesUpdate:判断元组是否可更新(同时更新同一个元组) //HeapTupleSatisfiesDirty:判断当前元组是否存在脏数据 //HeapTupleSatisfiesSelf:判断tuple对自身信息是否有效 //HeapTupleSatisfiesToast:判断是否TOAST表 //HeapTupleSatisfiesVacuum:判断元组是否能被VACUUM删除 //HeapTupleSatisfiesAny:所有元组都可见 //HeapTupleSatisfiesHistoricMVCC:用于CATALOG 表 /* * Struct representing all kind of possible snapshots. * 该结构体可表达的信息囊括了所有可能的快照. * * There are several different kinds of snapshots: * * Normal MVCC snapshots * * MVCC snapshots taken during recovery (in Hot-Standby mode) * * Historic MVCC snapshots used during logical decoding * * snapshots passed to HeapTupleSatisfiesDirty() * * snapshots passed to HeapTupleSatisfiesNonVacuumable() * * snapshots used for SatisfiesAny, Toast, Self where no members are * accessed. * 有以下几种不同类型的快照: * * 常规的MVCC快照 * * 在恢复期间的MVCC快照(处于Hot-Standby模式) * * 在逻辑解码过程中使用的历史MVCC快照 * * 作为参数传递给HeapTupleSatisfiesDirty()函数的快照 * * 作为参数传递给HeapTupleSatisfiesNonVacuumable()函数的快照 * * 用于在没有成员访问情况下SatisfiesAny、Toast和Self的快照 * * TODO: It's probably a good idea to split this struct using a NodeTag * similar to how parser and executor nodes are handled, with one type for * each different kind of snapshot to avoid overloading the meaning of * individual fields. * TODO: 使用类似于parser/executor nodes的处理,使用NodeTag来拆分结构体会是一个好的做法, * 使用OO(面向对象继承)的方法. */ typedef struct SnapshotData { //测试tuple是否可见的函数 SnapshotSatisfiesFunc satisfies; /* tuple test function */ /* * The remaining fields are used only for MVCC snapshots, and are normally * just zeroes in special snapshots. (But xmin and xmax are used * specially by HeapTupleSatisfiesDirty, and xmin is used specially by * HeapTupleSatisfiesNonVacuumable.) * 余下的字段仅用于MVCC快照,在特殊快照中通常为0。 * (xmin和xmax可用于HeapTupleSatisfiesDirty,xmin可用于HeapTupleSatisfiesNonVacuumable) * * An MVCC snapshot can never see the effects of XIDs >= xmax. It can see * the effects of all older XIDs except those listed in the snapshot. xmin * is stored as an optimization to avoid needing to search the XID arrays * for most tuples. * XIDs >= xmax的事务,对该快照是不可见的(没有任何影响). * 对该快照可见的是小于xmax,但不在snapshot列表中的XIDs. * 记录xmin是出于优化的目的,避免为大多数tuples搜索XID数组. */ //XID ∈ [2,min)是可见的 TransactionId xmin; /* all XID < xmin are visible to me */ //XID ∈ [xmax,∞)是不可见的 TransactionId xmax; /* all XID >= xmax are invisible to me */ /* * For normal MVCC snapshot this contains the all xact IDs that are in * progress, unless the snapshot was taken during recovery in which case * it's empty. For historic MVCC snapshots, the meaning is inverted, i.e. * it contains *committed* transactions between xmin and xmax. * 对于普通的MVCC快照,xip存储了所有正在进行中的XIDs,除非在恢复期间产生的快照(这时候数组为空) * 对于历史MVCC快照,意义相反,即它包含xmin和xmax之间的*已提交*事务。 * * note: all ids in xip[] satisfy xmin <= xip[i] < xmax * 注意: 所有在xip数组中的XIDs满足xmin <= xip[i] < xmax */ TransactionId *xip; //xip数组中的元素个数 uint32 xcnt; /* # of xact ids in xip[] */ /* * For non-historic MVCC snapshots, this contains subxact IDs that are in * progress (and other transactions that are in progress if taken during * recovery). For historic snapshot it contains *all* xids assigned to the * replayed transaction, including the toplevel xid. * 对于非历史MVCC快照,下面这些域含有活动的subxact IDs. * (以及在恢复过程中状态为进行中的事务). * 对于历史MVCC快照,这些域字段含有*所有*用于回放事务的快照,包括顶层事务XIDs. * * note: all ids in subxip[] are >= xmin, but we don't bother filtering * out any that are >= xmax * 注意:sbuxip数组中的元素均≥ xmin,但我们不需要过滤掉任何>= xmax的项 */ TransactionId *subxip; //subxip数组元素个数 int32 subxcnt; /* # of xact ids in subxip[] */ //是否溢出? bool suboverflowed; /* has the subxip array overflowed? */ //在Recovery期间的快照? bool takenDuringRecovery; /* recovery-shaped snapshot? */ //如为静态快照,则该值为F bool copied; /* false if it's a static snapshot */ //在自身的事务中,CID < curcid是可见的 CommandId curcid; /* in my xact, CID < curcid are visible */ /* * An extra return value for HeapTupleSatisfiesDirty, not used in MVCC * snapshots. * HeapTupleSatisfiesDirty返回的值,在MVCC快照中无用 */ uint32 speculativeToken; /* * Book-keeping information, used by the snapshot manager * 用于快照管理器的Book-keeping信息 */ //在ActiveSnapshot栈中的引用计数 uint32 active_count; /* refcount on ActiveSnapshot stack */ //在RegisteredSnapshots中的引用计数 uint32 regd_count; /* refcount on RegisteredSnapshots */ //RegisteredSnapshots堆中的链接 pairingheap_node ph_node; /* link in the RegisteredSnapshots heap */ //快照"拍摄"时间戳 TimestampTz whenTaken; /* timestamp when snapshot was taken */ //拍照时WAL stream中的位置 XLogRecPtr lsn; /* position in the WAL stream when taken */ } SnapshotData;
ShmemVariableCache
VariableCache是共享内存中的一种数据结构,用于跟踪OID和XID分配状态。
ShmemVariableCache是VariableCache结构体指针.
/* * VariableCache is a data structure in shared memory that is used to track * OID and XID assignment state. For largely historical reasons, there is * just one struct with different fields that are protected by different * LWLocks. * VariableCache是共享内存中的一种数据结构,用于跟踪OID和XID分配状态。 * 由于历史原因,这个结构体有不同的字段,由不同的LWLocks保护。 * * Note: xidWrapLimit and oldestXidDB are not "active" values, but are * used just to generate useful messages when xidWarnLimit or xidStopLimit * are exceeded. * 注意:xidWrapLimit和oldestXidDB是不"活跃"的值,在xidWarnLimit或xidStopLimit * 超出限制时用于产生有用的信息. */ typedef struct VariableCacheData { /* * These fields are protected by OidGenLock. * 这些域字段通过OidGenLock字段保护 */ //下一个待分配的OID Oid nextOid; /* next OID to assign */ //在必须执行XLOG work前可用OIDs uint32 oidCount; /* OIDs available before must do XLOG work */ /* * These fields are protected by XidGenLock. * 这些字段通过XidGenLock锁保护. */ //下一个待分配的事务ID TransactionId nextXid; /* next XID to assign */ //集群范围内最小datfrozenxid TransactionId oldestXid; /* cluster-wide minimum datfrozenxid */ //在该XID开始强制执行autovacuum TransactionId xidVacLimit; /* start forcing autovacuums here */ //在该XID开始提出警告 TransactionId xidWarnLimit; /* start complaining here */ //在该XID开外,拒绝生成下一个XID TransactionId xidStopLimit; /* refuse to advance nextXid beyond here */ //"世界末日"XID,需回卷 TransactionId xidWrapLimit; /* where the world ends */ //持有最小datfrozenxid的DB Oid oldestXidDB; /* database with minimum datfrozenxid */ /* * These fields are protected by CommitTsLock * 这些字段通过CommitTsLock锁保护 */ TransactionId oldestCommitTsXid; TransactionId newestCommitTsXid; /* * These fields are protected by ProcArrayLock. * 这些字段通过ProcArrayLock锁保护 */ TransactionId latestCompletedXid; /* newest XID that has committed or * aborted */ /* * These fields are protected by CLogTruncationLock * 这些字段通过CLogTruncationLock锁保护 */ //clog中最古老的XID TransactionId oldestClogXid; /* oldest it's safe to look up in clog */ } VariableCacheData; //结构体指针 typedef VariableCacheData *VariableCache; /* pointer to "variable cache" in shared memory (set up by shmem.c) */ //共享内存中的指针(通过shmem.c设置) VariableCache ShmemVariableCache = NULL;
GetSnapshotData函数返回快照信息.
重点是构造xmin : xmax : xip_list,其实现逻辑简单总结如下:
1.获取xmax = ShmemVariableCache->latestCompletedXid + 1;
2.遍历全局procArray数组,构建快照信息
2.1 获取进程相应的事务信息pgxact
2.2 获取进程事务ID(pgxact->xid),取最小的xid作为xmin(不包括0)
2.3 把xid放入快照->xip数组中(不包括本进程所在的事务id)
/* * GetSnapshotData -- returns information about running transactions. * GetSnapshotData -- 返回关于正在运行中的事务的相关信息 * * The returned snapshot includes xmin (lowest still-running xact ID), * xmax (highest completed xact ID + 1), and a list of running xact IDs * in the range xmin <= xid < xmax. It is used as follows: * All xact IDs < xmin are considered finished. * All xact IDs >= xmax are considered still running. * For an xact ID xmin <= xid < xmax, consult list to see whether * it is considered running or not. * This ensures that the set of transactions seen as "running" by the * current xact will not change after it takes the snapshot. * 返回的snapshot包括xmin(最小的正在运行的事务ID),xmax(已完结事务ID + 1), * 以及在xmin <= xid < xmax之间正在运行的事务IDs. * 意义如下: * 事务IDs < xmin是已确定完成的事务. * 事务IDs >= xmax是正在运行的事务. * 对于XID ∈ [xmin,xmax)的事务,需查阅列表确认是否正在运行中 * * All running top-level XIDs are included in the snapshot, except for lazy * VACUUM processes. We also try to include running subtransaction XIDs, * but since PGPROC has only a limited cache area for subxact XIDs, full * information may not be available. If we find any overflowed subxid arrays, * we have to mark the snapshot's subxid data as overflowed, and extra work * *may* need to be done to determine what's running (see XidInMVCCSnapshot() * in tqual.c). * 所有正在运行的顶层XIDs包含在快照中,除了lazy VACUUM进程. * 我们尝试包含所有正在运行的子事务XIDs,但由于PGPROC只有有限的缓存,包含所有的子事务信息暂未实现. * 如果我们搜索溢出的子事务数组,我们必须标记快照的subxid数据为溢出, * 而且需要执行额外的工作以确定哪些在运行(查看tqual.c中的XidInMVCCSnapshot()函数) * * We also update the following backend-global variables: * TransactionXmin: the oldest xmin of any snapshot in use in the * current transaction (this is the same as MyPgXact->xmin). * RecentXmin: the xmin computed for the most recent snapshot. XIDs * older than this are known not running any more. * RecentGlobalXmin: the global xmin (oldest TransactionXmin across all * running transactions, except those running LAZY VACUUM). This is * the same computation done by * GetOldestXmin(NULL, PROCARRAY_FLAGS_VACUUM). * RecentGlobalDataXmin: the global xmin for non-catalog tables * >= RecentGlobalXmin * 我们同时更新了以下后台全局变量: * TransactionXmin: 当前事务中在所有仍在使用的快照中最旧的xmin(与MyPgXact->xmin一致). * RecentXmin: 最近快照的xmin.小于xmin的事务已知已完结. * RecentGlobalXmin:全局的xmin(除了正在运行的LAZY VACUUM,跨越所有正在运行事务的最旧的TransactionXmin), * 这是使用同样的规则,通过GetOldestXmin(NULL, PROCARRAY_FLAGS_VACUUM)处理. * RecentGlobalDataXmin:非catalog数据表的全局xmin,该值>= RecentGlobalXmin. * * Note: this function should probably not be called with an argument that's * not statically allocated (see xip allocation below). * 注意:不应该使用非静态分配的参数调用这个函数(参见下面的xip分配)。 */ Snapshot GetSnapshotData(Snapshot snapshot) { ProcArrayStruct *arrayP = procArray;//进程数组 TransactionId xmin;//xmin TransactionId xmax;//xmax TransactionId globalxmin;//全局xmin int index; int count = 0; int subcount = 0; bool suboverflowed = false; TransactionId replication_slot_xmin = InvalidTransactionId; TransactionId replication_slot_catalog_xmin = InvalidTransactionId; Assert(snapshot != NULL); /* * Allocating space for maxProcs xids is usually overkill; numProcs would * be sufficient. But it seems better to do the malloc while not holding * the lock, so we can't look at numProcs. Likewise, we allocate much * more subxip storage than is probably needed. * 为maxProcs xids分配空间通常是多余的;numProcs就足够了。 * 但是在不持有锁的情况下执行malloc似乎更好,因此我们不能查看numProcs。 * 同样地,我们分配的子xip存储可能比实际需要的多得多。 * * This does open a possibility for avoiding repeated malloc/free: since * maxProcs does not change at runtime, we can simply reuse the previous * xip arrays if any. (This relies on the fact that all callers pass * static SnapshotData structs.) * 这确实为避免重复的malloc/free创造了一种可能性:因为maxProcs在运行时不会改变, * 如果有的话,我们可以简单地重用前面的xip数组。 * (这依赖于所有调用者都传递静态快照数据结构这一事实。) */ if (snapshot->xip == NULL) { /* * First call for this snapshot. Snapshot is same size whether or not * we are in recovery, see later comments. * 首次调用.快照的大小不管是在常规还是在恢复状态都是一样的,看稍后的注释. */ snapshot->xip = (TransactionId *) malloc(GetMaxSnapshotXidCount() * sizeof(TransactionId)); if (snapshot->xip == NULL) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); Assert(snapshot->subxip == NULL); snapshot->subxip = (TransactionId *) malloc(GetMaxSnapshotSubxidCount() * sizeof(TransactionId)); if (snapshot->subxip == NULL) ereport(ERROR, (errcode(ERRCODE_OUT_OF_MEMORY), errmsg("out of memory"))); } /* * It is sufficient to get shared lock on ProcArrayLock, even if we are * going to set MyPgXact->xmin. * 即使我们要设置MyPgXact->xmin,也需要获取锁,在ProcArrayLock上获得共享锁就足够了. * */ LWLockAcquire(ProcArrayLock, LW_SHARED); /* xmax is always latestCompletedXid + 1 */ //xmax = latestCompletedXid + 1 //已完结事务号 + 1 xmax = ShmemVariableCache->latestCompletedXid; Assert(TransactionIdIsNormal(xmax)); TransactionIdAdvance(xmax);// + 1 /* initialize xmin calculation with xmax */ //初始化xmin为xmax globalxmin = xmin = xmax; //是否处于恢复过程中? snapshot->takenDuringRecovery = RecoveryInProgress(); if (!snapshot->takenDuringRecovery) { //不是,正常运行中 int *pgprocnos = arrayP->pgprocnos;//进程数 int numProcs; /* * Spin over procArray checking xid, xmin, and subxids. The goal is * to gather all active xids, find the lowest xmin, and try to record * subxids. * Spin Over procArray,检查xid/xmin和subxids. * 目标是搜集所有活动的xids,找到最小的xmin,并尝试记录subxids. */ numProcs = arrayP->numProcs; for (index = 0; index < numProcs; index++)//遍历procArray数组 { int pgprocno = pgprocnos[index];//allPgXact[]索引 PGXACT *pgxact = &allPgXact[pgprocno];//获取PGXACT TransactionId xid;//事务id /* * Skip over backends doing logical decoding which manages xmin * separately (check below) and ones running LAZY VACUUM. * 跳过正在执行逻辑解码(单独管理xmin)和执行LAZY VACUUM的进程. * */ if (pgxact->vacuumFlags & (PROC_IN_LOGICAL_DECODING | PROC_IN_VACUUM)) continue; /* Update globalxmin to be the smallest valid xmin */ //更新globalxmin为最小有效的xmin xid = UINT32_ACCESS_ONCE(pgxact->xmin);//获取进程事务的xmin if (TransactionIdIsNormal(xid) && NormalTransactionIdPrecedes(xid, globalxmin)) globalxmin = xid; /* Fetch xid just once - see GetNewTransactionId */ //只提取一次xid -- 查看函数GetNewTransactionId xid = UINT32_ACCESS_ONCE(pgxact->xid); /* * If the transaction has no XID assigned, we can skip it; it * won't have sub-XIDs either. If the XID is >= xmax, we can also * skip it; such transactions will be treated as running anyway * (and any sub-XIDs will also be >= xmax). * 如果事务未分配XID事务号,跳过此事务.该事务也不会含有子事务. * 如果XID >= xmax,我们也可以跳过,这些事务可被处理为正在运行的思维. * (这些事务的子事务XID也同样会 >= xmax) */ if (!TransactionIdIsNormal(xid) || !NormalTransactionIdPrecedes(xid, xmax)) continue; /* * We don't include our own XIDs (if any) in the snapshot, but we * must include them in xmin. * 在快照中,不会包含自己的XIDs,但必须体现在xmin中 */ if (NormalTransactionIdPrecedes(xid, xmin)) //xid 小于 xmin,设置为xid xmin = xid; if (pgxact == MyPgXact) continue;//跳过本事务 /* Add XID to snapshot. */ //添加XID到快照中 snapshot->xip[count++] = xid; /* * Save subtransaction XIDs if possible (if we've already * overflowed, there's no point). Note that the subxact XIDs must * be later than their parent, so no need to check them against * xmin. We could filter against xmax, but it seems better not to * do that much work while holding the ProcArrayLock. * 如可能,保存子事务XIDs(如果已经溢出,那就没法了). * 注意子事务XIDs必须在他们的父事务之后发生,因此无需检查xmin. * 我们可以利用xmax进行过滤,但是在持有锁ProcArrayLock时最好不要做那么多的工作。 * * The other backend can add more subxids concurrently, but cannot * remove any. Hence it's important to fetch nxids just once. * Should be safe to use memcpy, though. (We needn't worry about * missing any xids added concurrently, because they must postdate * xmax.) * 其他后台进程可能并发增加子事务ID,但不能清除. * 因此,只取一次nxids很重要.不过,使用memcpy是安全的. * (不需要担心遗漏并发增加xids,因为他们在xmax之后) * * Again, our own XIDs are not included in the snapshot. * 再次,我们自己的XIDs不需要包含在快照中 */ if (!suboverflowed) { if (pgxact->overflowed) suboverflowed = true; else { int nxids = pgxact->nxids; if (nxids > 0) { PGPROC *proc = &allProcs[pgprocno]; pg_read_barrier(); /* pairs with GetNewTransactionId */ memcpy(snapshot->subxip + subcount, (void *) proc->subxids.xids, nxids * sizeof(TransactionId)); subcount += nxids; } } } } } else { /* * We're in hot standby, so get XIDs from KnownAssignedXids. * 处于hot standby中,通过KnownAssignedXids获取XIDs. * * We store all xids directly into subxip[]. Here's why: * 直接存储所有的xids到subxip[]中,这是因为: * * In recovery we don't know which xids are top-level and which are * subxacts, a design choice that greatly simplifies xid processing. * 在恢复过程中,我们不需要知道哪些xids是顶层事务,哪些是子事务, * 这可以极大的简化xid处理过程. * * It seems like we would want to try to put xids into xip[] only, but * that is fairly small. We would either need to make that bigger or * to increase the rate at which we WAL-log xid assignment; neither is * an appealing choice. * 似乎我们只想把xid放到xip[]中,但xip数组是相当小的。 * 我们要么需要扩展,要么提高WAL-log xid分派的速度; * 但这两个选择都不吸引人。 * * We could try to store xids into xip[] first and then into subxip[] * if there are too many xids. That only works if the snapshot doesn't * overflow because we do not search subxip[] in that case. A simpler * way is to just store all xids in the subxact array because this is * by far the bigger array. We just leave the xip array empty. * 如果xid太多的话,我们尝试先将xid存储到xip[]中,然后再在subxip[]中存储。 * 这只在快照没有溢出的情况下有效,因为在这种情况下我们不搜索subxip[]。 * 一种更简单的方法是将所有xid存储在subxact数组中,因为这个数组要大得多。 * 让xip数组为空。 * * Either way we need to change the way XidInMVCCSnapshot() works * depending upon when the snapshot was taken, or change normal * snapshot processing so it matches. * 无论哪种方式,我们都需要根据快照的拍摄时间更改XidInMVCCSnapshot()的工作方式, * 或者更改正常的快照处理,使其匹配。 * * Note: It is possible for recovery to end before we finish taking * the snapshot, and for newly assigned transaction ids to be added to * the ProcArray. xmax cannot change while we hold ProcArrayLock, so * those newly added transaction ids would be filtered away, so we * need not be concerned about them. * 注意:在我们完成快照之前,恢复可能会结束, * 并且新分配的事务id可能会添加到ProcArray中。 * 当我们持有锁ProcArrayLock时,xmax无法更改, * 因此那些新添加的事务id将被过滤掉,因此无需担心。 */ subcount = KnownAssignedXidsGetAndSetXmin(snapshot->subxip, &xmin, xmax); if (TransactionIdPrecedesOrEquals(xmin, procArray->lastOverflowedXid)) suboverflowed = true; } /* * Fetch into local variable while ProcArrayLock is held - the * LWLockRelease below is a barrier, ensuring this happens inside the * lock. * 持有ProcArrayLock锁时,提前到本地变量中, * 下面的LWLockRelease是一个屏障,确保这发生在锁内部。 */ replication_slot_xmin = procArray->replication_slot_xmin; replication_slot_catalog_xmin = procArray->replication_slot_catalog_xmin; if (!TransactionIdIsValid(MyPgXact->xmin)) MyPgXact->xmin = TransactionXmin = xmin; LWLockRelease(ProcArrayLock); /* * Update globalxmin to include actual process xids. This is a slightly * different way of computing it than GetOldestXmin uses, but should give * the same result. * 更新globalxmin已包含实际的进程xids. * 这是一种与GetOldestXmin使用的计算方法略有不同的方法,但是应该会得到相同的结果。 */ if (TransactionIdPrecedes(xmin, globalxmin)) globalxmin = xmin; /* Update global variables too */ //更新全局变量 RecentGlobalXmin = globalxmin - vacuum_defer_cleanup_age; if (!TransactionIdIsNormal(RecentGlobalXmin)) RecentGlobalXmin = FirstNormalTransactionId; /* Check whether there's a replication slot requiring an older xmin. */ //检查是否存在正在请求更旧xmin的复制slot if (TransactionIdIsValid(replication_slot_xmin) && NormalTransactionIdPrecedes(replication_slot_xmin, RecentGlobalXmin)) RecentGlobalXmin = replication_slot_xmin; /* Non-catalog tables can be vacuumed if older than this xid */ //比该xid小的非catalog表可被vacuum进程清除 RecentGlobalDataXmin = RecentGlobalXmin; /* * Check whether there's a replication slot requiring an older catalog * xmin. * 检查是否存在正确请求更旧catalog xmin的复制slot */ if (TransactionIdIsNormal(replication_slot_catalog_xmin) && NormalTransactionIdPrecedes(replication_slot_catalog_xmin, RecentGlobalXmin)) RecentGlobalXmin = replication_slot_catalog_xmin; RecentXmin = xmin; snapshot->xmin = xmin; snapshot->xmax = xmax; snapshot->xcnt = count; snapshot->subxcnt = subcount; snapshot->suboverflowed = suboverflowed; //当前命令id snapshot->curcid = GetCurrentCommandId(false); /* * This is a new snapshot, so set both refcounts are zero, and mark it as * not copied in persistent memory. * 这是一个新的快照,因此设置refcounts为0,并标记其未在持久化内存中拷贝. */ snapshot->active_count = 0; snapshot->regd_count = 0; snapshot->copied = false; if (old_snapshot_threshold < 0) { /* * If not using "snapshot too old" feature, fill related fields with * dummy values that don't require any locking. * 如启用"snapshot too old"特性,使用虚拟值填充相关的字段,这里不需要锁. */ snapshot->lsn = InvalidXLogRecPtr; snapshot->whenTaken = 0; } else { /* * Capture the current time and WAL stream location in case this * snapshot becomes old enough to need to fall back on the special * "old snapshot" logic. * 捕获当前时间和WAL流位置,以防快照变得足够旧时需要使用特殊的“old snapshot”逻辑。 */ snapshot->lsn = GetXLogInsertRecPtr(); snapshot->whenTaken = GetSnapshotCurrentTimestamp(); MaintainOldSnapshotTimeMapping(snapshot->whenTaken, xmin); } //返回快照 return snapshot; }
执行简单查询,可触发获取快照逻辑.
16:35:08 (xdb@[local]:5432)testdb=# begin; BEGIN 16:35:13 (xdb@[local]:5432)testdb=#* select 1;
启动gdb,设置断点
(gdb) b GetSnapshotData Breakpoint 1 at 0x89aef3: file procarray.c, line 1519. (gdb) c Continuing. Breakpoint 1, GetSnapshotData (snapshot=0xf9be60 <CurrentSnapshotData>) at procarray.c:1519 1519 ProcArrayStruct *arrayP = procArray; (gdb)
输入参数snapshot,实质是全局变量CurrentSnapshotData
(gdb) p *snapshot $1 = {satisfies = 0xa9310d <HeapTupleSatisfiesMVCC>, xmin = 2354, xmax = 2358, xip = 0x24c7e40, xcnt = 1, subxip = 0x251dfa0, subxcnt = 0, suboverflowed = false, takenDuringRecovery = false, copied = false, curcid = 0, speculativeToken = 0, active_count = 0, regd_count = 0, ph_node = {first_child = 0x0, next_sibling = 0x0, prev_or_parent = 0x0}, whenTaken = 0, lsn = 0}
查看共享内存(ShmemVariableCache)中的信息.
nextXID = 2358,下一个待分配的事务ID = 2358.
(gdb) p *ShmemVariableCache $2 = {nextOid = 42605, oidCount = 8183, nextXid = 2358, oldestXid = 561, xidVacLimit = 200000561, xidWarnLimit = 2136484208, xidStopLimit = 2146484208, xidWrapLimit = 2147484208, oldestXidDB = 16400, oldestCommitTsXid = 0, newestCommitTsXid = 0, latestCompletedXid = 2357, oldestClogXid = 561} (gdb)
获取全局进程数组procArray,赋值->arrayP.
初始化相关变量.
(gdb) n 1524 int count = 0; (gdb) n 1525 int subcount = 0; (gdb) 1526 bool suboverflowed = false; (gdb) 1527 volatile TransactionId replication_slot_xmin = InvalidTransactionId; (gdb) 1528 volatile TransactionId replication_slot_catalog_xmin = InvalidTransactionId; (gdb) 1530 Assert(snapshot != NULL); (gdb) 1543 if (snapshot->xip == NULL) (gdb)
查看进程数组信息和allPgXact[]数组编号(arrayP->pgprocnos数组).
allPgXact定义:static PGXACT *allPgXact;
(gdb) p *arrayP $3 = {numProcs = 5, maxProcs = 112, maxKnownAssignedXids = 7280, numKnownAssignedXids = 0, tailKnownAssignedXids = 0, headKnownAssignedXids = 0, known_assigned_xids_lck = 0 '\000', lastOverflowedXid = 0, replication_slot_xmin = 0, replication_slot_catalog_xmin = 0, pgprocnos = 0x7f8765d9a3a8} (gdb) p arrayP->pgprocnos[0] $4 = 97 (gdb) p arrayP->pgprocnos[1] $5 = 98 (gdb) p arrayP->pgprocnos[2] $6 = 99 (gdb) p arrayP->pgprocnos[3] $7 = 103 (gdb) p arrayP->pgprocnos[4] $9 = 111
加锁,获取/修改相关信息
(gdb) 1568 LWLockAcquire(ProcArrayLock, LW_SHARED);
计算xmax
(gdb) n 1571 xmax = ShmemVariableCache->latestCompletedXid; (gdb) 1572 Assert(TransactionIdIsNormal(xmax)); (gdb) p xmax $10 = 2357 (gdb) n 1573 TransactionIdAdvance(xmax); (gdb) 1576 globalxmin = xmin = xmax; (gdb) 1578 snapshot->takenDuringRecovery = RecoveryInProgress(); (gdb) p xmax $11 = 2358
判断是否处于恢复状态,当前不是恢复状态,进入相应的处理逻辑
(gdb) n 1580 if (!snapshot->takenDuringRecovery) (gdb) p snapshot->takenDuringRecovery $13 = false (gdb) n 1582 int *pgprocnos = arrayP->pgprocnos; (gdb)
获取进程数和PGXACT索引数组,准备遍历
(gdb) n 1590 numProcs = arrayP->numProcs; (gdb) 1591 for (index = 0; index < numProcs; index++) (gdb) (gdb) p *pgprocnos $14 = 97 (gdb) p numProcs $15 = 5 (gdb)
获取pgxact信息
(gdb) n 1593 int pgprocno = pgprocnos[index]; (gdb) 1594 volatile PGXACT *pgxact = &allPgXact[pgprocno]; (gdb) 1601 if (pgxact->vacuumFlags & PROC_IN_LOGICAL_DECODING) (gdb) 1605 if (pgxact->vacuumFlags & PROC_IN_VACUUM) (gdb) 1609 xid = pgxact->xmin; /* fetch just once */ (gdb) p *pgxact $16 = {xid = 0, xmin = 0, vacuumFlags = 0 '\000', overflowed = false, delayChkpt = false, nxids = 0 '\000'} (gdb)
不是正常的xid,下一个pgxact
(gdb) n 1610 if (TransactionIdIsNormal(xid) && (gdb) 1615 xid = pgxact->xid; (gdb) 1623 if (!TransactionIdIsNormal(xid) (gdb) p xid $17 = 0 (gdb) n 1625 continue; (gdb)
下一个xid = 2355,正常的事务ID
(gdb) 1591 for (index = 0; index < numProcs; index++) (gdb) 1593 int pgprocno = pgprocnos[index]; (gdb) 1594 volatile PGXACT *pgxact = &allPgXact[pgprocno]; (gdb) 1601 if (pgxact->vacuumFlags & PROC_IN_LOGICAL_DECODING) (gdb) p *pgxact $18 = {xid = 2355, xmin = 0, vacuumFlags = 0 '\000', overflowed = false, delayChkpt = false, nxids = 0 '\000'} (gdb)
进行处理
(gdb) n 1605 if (pgxact->vacuumFlags & PROC_IN_VACUUM) (gdb) 1609 xid = pgxact->xmin; /* fetch just once */ (gdb) 1610 if (TransactionIdIsNormal(xid) && (gdb) 1615 xid = pgxact->xid; (gdb) 1623 if (!TransactionIdIsNormal(xid) (gdb) 1624 || !NormalTransactionIdPrecedes(xid, xmax)) (gdb) 1631 if (NormalTransactionIdPrecedes(xid, xmin)) (gdb) p xid $19 = 2355 (gdb) p xmin $20 = 2358 (gdb) n 1632 xmin = xid; (gdb) 1633 if (pgxact == MyPgXact) (gdb)
这是同一个xact,处理下一个xact
(gdb) 1633 if (pgxact == MyPgXact) (gdb) p pgxact $21 = (volatile PGXACT *) 0x7f8765d9a218 (gdb) p MyPgXact $22 = (struct PGXACT *) 0x7f8765d9a218 (gdb) n 1634 continue; (gdb)
下一个是2354
... (gdb) p *pgxact $23 = {xid = 2354, xmin = 0, vacuumFlags = 0 '\000', overflowed = false, delayChkpt = false, nxids = 0 '\000'} (gdb)
xmin调整为2354
1631 if (NormalTransactionIdPrecedes(xid, xmin)) (gdb) 1632 xmin = xid; (gdb) 1633 if (pgxact == MyPgXact) (gdb) p xmin $24 = 2354 (gdb)
写入到xip_list中
1637 snapshot->xip[count++] = xid; (gdb) 1654 if (!suboverflowed) (gdb) (gdb) p count $25 = 1
继续循环,完成5个pgxact的遍历
1591 for (index = 0; index < numProcs; index++) (gdb) 1715 replication_slot_xmin = procArray->replication_slot_xmin; (gdb)
无复制信息
(gdb) 1715 replication_slot_xmin = procArray->replication_slot_xmin; (gdb) p procArray->replication_slot_xmin $28 = 0 (gdb) n 1716 replication_slot_catalog_xmin = procArray->replication_slot_catalog_xmin; (gdb) 1718 if (!TransactionIdIsValid(MyPgXact->xmin))
调整本进程的事务信息
(gdb) n 1719 MyPgXact->xmin = TransactionXmin = xmin; (gdb) p MyPgXact->xmin $29 = 0 (gdb) n
释放锁
1721 LWLockRelease(ProcArrayLock); (gdb) 1728 if (TransactionIdPrecedes(xmin, globalxmin)) (gdb)
调整全局xmin
(gdb) p xmin $30 = 2354 (gdb) p globalxmin $31 = 2358 (gdb) n 1729 globalxmin = xmin; (gdb)
更新其他信息
(gdb) 1732 RecentGlobalXmin = globalxmin - vacuum_defer_cleanup_age; (gdb) p RecentGlobalXmin $32 = 2354 (gdb) p vacuum_defer_cleanup_age $33 = 0 (gdb) n 1733 if (!TransactionIdIsNormal(RecentGlobalXmin)) (gdb) 1737 if (TransactionIdIsValid(replication_slot_xmin) && (gdb) 1742 RecentGlobalDataXmin = RecentGlobalXmin; (gdb) p RecentGlobalXmin $34 = 2354 (gdb) n 1748 if (TransactionIdIsNormal(replication_slot_catalog_xmin) && (gdb)
填充snapshot域字段信息
(gdb) 1752 RecentXmin = xmin; (gdb) 1754 snapshot->xmin = xmin; (gdb) 1755 snapshot->xmax = xmax; (gdb) 1756 snapshot->xcnt = count; (gdb) 1757 snapshot->subxcnt = subcount; (gdb) 1758 snapshot->suboverflowed = suboverflowed; (gdb) 1760 snapshot->curcid = GetCurrentCommandId(false); (gdb) 1766 snapshot->active_count = 0; (gdb) 1767 snapshot->regd_count = 0; (gdb) 1768 snapshot->copied = false; (gdb) 1770 if (old_snapshot_threshold < 0) (gdb) 1776 snapshot->lsn = InvalidXLogRecPtr; (gdb) 1777 snapshot->whenTaken = 0; (gdb) 1791 return snapshot; (gdb)
返回snapshot
(gdb) p snapshot $35 = (Snapshot) 0xf9be60 <CurrentSnapshotData> (gdb) p *snapshot $36 = {satisfies = 0xa9310d <HeapTupleSatisfiesMVCC>, xmin = 2354, xmax = 2358, xip = 0x24c7e40, xcnt = 1, subxip = 0x251dfa0, subxcnt = 0, suboverflowed = false, takenDuringRecovery = false, copied = false, curcid = 0, speculativeToken = 0, active_count = 0, regd_count = 0, ph_node = {first_child = 0x0, next_sibling = 0x0, prev_or_parent = 0x0}, whenTaken = 0, lsn = 0} (gdb)
注意:snapshot->satisfies函数在初始化该全局变量已设置为HeapTupleSatisfiesMVCC.
感谢各位的阅读,以上就是“PostgreSQL中GetSnapshotData的处理过程是什么”的内容了,经过本文的学习后,相信大家对PostgreSQL中GetSnapshotData的处理过程是什么这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。