温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

PostgreSQL 源码解读(91)- 查询语句#76(ExecHashJoin函数#2)

发布时间:2020-08-04 14:24:06 来源:ITPUB博客 阅读:260 作者:husthxd 栏目:关系型数据库

本节是ExecHashJoin函数介绍的第二部分,主要介绍了ExecHashJoin中依赖的其他函数的实现逻辑,包括ExecHashTableCreate、ExecChooseHashTableSize等。

一、数据结构

Plan
所有计划节点通过将Plan结构作为第一个字段从Plan结构“派生”。这确保了在将节点转换为计划节点时,一切都能正常工作。(在执行器中以通用方式传递时,节点指针经常被转换为Plan *)

/* ----------------
 *      Plan node
 *
 * All plan nodes "derive" from the Plan structure by having the
 * Plan structure as the first field.  This ensures that everything works
 * when nodes are cast to Plan's.  (node pointers are frequently cast to Plan*
 * when passed around generically in the executor)
 * 所有计划节点通过将Plan结构作为第一个字段从Plan结构“派生”。
 * 这确保了在将节点转换为计划节点时,一切都能正常工作。
 * (在执行器中以通用方式传递时,节点指针经常被转换为Plan *)
 *
 * We never actually instantiate any Plan nodes; this is just the common
 * abstract superclass for all Plan-type nodes.
 * 从未实例化任何Plan节点;这只是所有Plan-type节点的通用抽象超类。
 * ----------------
 */
typedef struct Plan
{
    NodeTag     type;//节点类型

    /*
     * 成本估算信息;estimated execution costs for plan (see costsize.c for more info)
     */
    Cost        startup_cost;   /* 启动成本;cost expended before fetching any tuples */
    Cost        total_cost;     /* 总成本;total cost (assuming all tuples fetched) */

    /*
     * 优化器估算信息;planner's estimate of result size of this plan step
     */
    double      plan_rows;      /* 行数;number of rows plan is expected to emit */
    int         plan_width;     /* 平均行大小(Byte为单位);average row width in bytes */

    /*
     * 并行执行相关的信息;information needed for parallel query
     */
    bool        parallel_aware; /* 是否参与并行执行逻辑?engage parallel-aware logic? */
    bool        parallel_safe;  /* 是否并行安全;OK to use as part of parallel plan? */

    /*
     * Plan类型节点通用的信息.Common structural data for all Plan types.
     */
    int         plan_node_id;   /* unique across entire final plan tree */
    List       *targetlist;     /* target list to be computed at this node */
    List       *qual;           /* implicitly-ANDed qual conditions */
    struct Plan *lefttree;      /* input plan tree(s) */
    struct Plan *righttree;
    List       *initPlan;       /* Init Plan nodes (un-correlated expr
                                 * subselects) */

    /*
     * Information for management of parameter-change-driven rescanning
     * parameter-change-driven重扫描的管理信息.
     * 
     * extParam includes the paramIDs of all external PARAM_EXEC params
     * affecting this plan node or its children.  setParam params from the
     * node's initPlans are not included, but their extParams are.
     *
     * allParam includes all the extParam paramIDs, plus the IDs of local
     * params that affect the node (i.e., the setParams of its initplans).
     * These are _all_ the PARAM_EXEC params that affect this node.
     */
    Bitmapset  *extParam;
    Bitmapset  *allParam;
} Plan;

JoinState
Hash/NestLoop/Merge Join的基类

/* ----------------
 *   JoinState information
 *
 *      Superclass for state nodes of join plans.
 *      Hash/NestLoop/Merge Join的基类
 * ----------------
 */
typedef struct JoinState
{
    PlanState   ps;//基类PlanState
    JoinType    jointype;//连接类型
    //在找到一个匹配inner tuple的时候,如需要跳转到下一个outer tuple,则该值为T
    bool        single_match;   /* True if we should skip to next outer tuple
                                 * after finding one inner match */
    //连接条件表达式(除了ps.qual)
    ExprState  *joinqual;       /* JOIN quals (in addition to ps.qual) */
} JoinState;

HashJoinState
Hash Join运行期状态结构体

/* these structs are defined in executor/hashjoin.h: */
typedef struct HashJoinTupleData *HashJoinTuple;
typedef struct HashJoinTableData *HashJoinTable;

typedef struct HashJoinState
{
    JoinState   js;             /* 基类;its first field is NodeTag */
    ExprState  *hashclauses;//hash连接条件
    List       *hj_OuterHashKeys;   /* 外表条件链表;list of ExprState nodes */
    List       *hj_InnerHashKeys;   /* 内表连接条件;list of ExprState nodes */
    List       *hj_HashOperators;   /* 操作符OIDs链表;list of operator OIDs */
    HashJoinTable hj_HashTable;//Hash表
    uint32      hj_CurHashValue;//当前的Hash值
    int         hj_CurBucketNo;//当前的bucket编号
    int         hj_CurSkewBucketNo;//行倾斜bucket编号
    HashJoinTuple hj_CurTuple;//当前元组
    TupleTableSlot *hj_OuterTupleSlot;//outer relation slot
    TupleTableSlot *hj_HashTupleSlot;//Hash tuple slot
    TupleTableSlot *hj_NullOuterTupleSlot;//用于外连接的outer虚拟slot
    TupleTableSlot *hj_NullInnerTupleSlot;//用于外连接的inner虚拟slot
    TupleTableSlot *hj_FirstOuterTupleSlot;//
    int         hj_JoinState;//JoinState状态
    bool        hj_MatchedOuter;//是否匹配
    bool        hj_OuterNotEmpty;//outer relation是否为空
} HashJoinState;

HashJoinTable
Hash表数据结构

typedef struct HashJoinTableData
{
    int         nbuckets;       /* 内存中的hash桶数;# buckets in the in-memory hash table */
    int         log2_nbuckets;  /* 2的对数(nbuckets必须是2的幂);its log2 (nbuckets must be a power of 2) */

    int         nbuckets_original;  /* 首次hash时的桶数;# buckets when starting the first hash */
    int         nbuckets_optimal;   /* 优化后的桶数(每个批次);optimal # buckets (per batch) */
    int         log2_nbuckets_optimal;  /* 2的对数;log2(nbuckets_optimal) */

    /* buckets[i] is head of list of tuples in i'th in-memory bucket */
    //bucket [i]是内存中第i个桶中的元组链表的head item
    union
    {
        /* unshared array is per-batch storage, as are all the tuples */
        //未共享数组是按批处理存储的,所有元组均如此
        struct HashJoinTupleData **unshared;
        /* shared array is per-query DSA area, as are all the tuples */
        //共享数组是每个查询的DSA区域,所有元组均如此
        dsa_pointer_atomic *shared;
    }           buckets;

    bool        keepNulls;      /*如不匹配则存储NULL元组,该值为T;true to store unmatchable NULL tuples */

    bool        skewEnabled;    /*是否使用倾斜优化?;are we using skew optimization? */
    HashSkewBucket **skewBucket;    /* 倾斜的hash表桶数;hashtable of skew buckets */
    int         skewBucketLen;  /* skewBucket数组大小;size of skewBucket array (a power of 2!) */
    int         nSkewBuckets;   /* 活动的倾斜桶数;number of active skew buckets */
    int        *skewBucketNums; /* 活动倾斜桶数组索引;array indexes of active skew buckets */

    int         nbatch;         /* 批次数;number of batches */
    int         curbatch;       /* 当前批次,第一轮为0;current batch #; 0 during 1st pass */

    int         nbatch_original;    /* 在开始inner扫描时的批次;nbatch when we started inner scan */
    int         nbatch_outstart;    /* 在开始outer扫描时的批次;nbatch when we started outer scan */

    bool        growEnabled;    /* 关闭nbatch增加的标记;flag to shut off nbatch increases */

    double      totalTuples;    /* 从inner plan获得的元组数;# tuples obtained from inner plan */
    double      partialTuples;  /* 通过hashjoin获得的inner元组数;# tuples obtained from inner plan by me */
    double      skewTuples;     /* 倾斜元组数;# tuples inserted into skew tuples */

    /*
     * These arrays are allocated for the life of the hash join, but only if
     * nbatch > 1.  A file is opened only when we first write a tuple into it
     * (otherwise its pointer remains NULL).  Note that the zero'th array
     * elements never get used, since we will process rather than dump out any
     * tuples of batch zero.
     * 这些数组在散列连接的生命周期内分配,但仅当nbatch > 1时分配。
     * 只有当第一次将元组写入文件时,文件才会打开(否则它的指针将保持NULL)。
     * 注意,第0个数组元素永远不会被使用,因为批次0的元组永远不会转储.
     */
    BufFile   **innerBatchFile; /* 每个批次的inner虚拟临时文件缓存;buffered virtual temp file per batch */
    BufFile   **outerBatchFile; /* 每个批次的outer虚拟临时文件缓存;buffered virtual temp file per batch */

    /*
     * Info about the datatype-specific hash functions for the datatypes being
     * hashed. These are arrays of the same length as the number of hash join
     * clauses (hash keys).
     * 有关正在散列的数据类型的特定于数据类型的散列函数的信息。
     * 这些数组的长度与散列连接子句(散列键)的数量相同。
     */
    FmgrInfo   *outer_hashfunctions;    /* outer hash函数FmgrInfo结构体;lookup data for hash functions */
    FmgrInfo   *inner_hashfunctions;    /* inner hash函数FmgrInfo结构体;lookup data for hash functions */
    bool       *hashStrict;     /* 每个hash操作符是严格?is each hash join operator strict? */

    Size        spaceUsed;      /* 元组使用的当前内存空间大小;memory space currently used by tuples */
    Size        spaceAllowed;   /* 空间使用上限;upper limit for space used */
    Size        spacePeak;      /* 峰值的空间使用;peak space used */
    Size        spaceUsedSkew;  /* 倾斜哈希表的当前空间使用情况;skew hash table's current space usage */
    Size        spaceAllowedSkew;   /* 倾斜哈希表的使用上限;upper limit for skew hashtable */

    MemoryContext hashCxt;      /* 整个散列连接存储的上下文;context for whole-hash-join storage */
    MemoryContext batchCxt;     /* 该批次存储的上下文;context for this-batch-only storage */

    /* used for dense allocation of tuples (into linked chunks) */
    //用于密集分配元组(到链接块中)
    HashMemoryChunk chunks;     /* 整个批次使用一个链表;one list for the whole batch */

    /* Shared and private state for Parallel Hash. */
    //并行hash使用的共享和私有状态
    HashMemoryChunk current_chunk;  /* 后台进程的当前chunk;this backend's current chunk */
    dsa_area   *area;           /* 用于分配内存的DSA区域;DSA area to allocate memory from */
    ParallelHashJoinState *parallel_state;//并行执行状态
    ParallelHashJoinBatchAccessor *batches;//并行访问器
    dsa_pointer current_chunk_shared;//当前chunk的开始指针
} HashJoinTableData;

typedef struct HashJoinTableData *HashJoinTable;

HashJoinTupleData
Hash连接元组数据

/* ----------------------------------------------------------------
 *              hash-join hash table structures
 *
 * Each active hashjoin has a HashJoinTable control block, which is
 * palloc'd in the executor's per-query context.  All other storage needed
 * for the hashjoin is kept in private memory contexts, two for each hashjoin.
 * This makes it easy and fast to release the storage when we don't need it
 * anymore.  (Exception: data associated with the temp files lives in the
 * per-query context too, since we always call buffile.c in that context.)
 * 每个活动的hashjoin都有一个可散列的控制块,它在执行程序的每个查询上下文中都是通过palloc分配的。
 * hashjoin所需的所有其他存储都保存在私有内存上下文中,每个hashjoin有两个。
 * 当不再需要它的时候,这使得释放它变得简单和快速。
 * (例外:与临时文件相关的数据也存在于每个查询上下文中,因为在这种情况下总是调用buffile.c。)
 *
 * The hashtable contexts are made children of the per-query context, ensuring
 * that they will be discarded at end of statement even if the join is
 * aborted early by an error.  (Likewise, any temporary files we make will
 * be cleaned up by the virtual file manager in event of an error.)
 * hashtable上下文是每个查询上下文的子上下文,确保在语句结束时丢弃它们,即使连接因错误而提前中止。
 *   (同样,如果出现错误,虚拟文件管理器将清理创建的任何临时文件。)
 *
 * Storage that should live through the entire join is allocated from the
 * "hashCxt", while storage that is only wanted for the current batch is
 * allocated in the "batchCxt".  By resetting the batchCxt at the end of
 * each batch, we free all the per-batch storage reliably and without tedium.
 * 通过整个连接的存储空间应从“hashCxt”分配,而只需要当前批处理的存储空间在“batchCxt”中分配。
 * 通过在每个批处理结束时重置batchCxt,可以可靠地释放每个批处理的所有存储,而不会感到单调乏味。
 * 
 * During first scan of inner relation, we get its tuples from executor.
 * If nbatch > 1 then tuples that don't belong in first batch get saved
 * into inner-batch temp files. The same statements apply for the
 * first scan of the outer relation, except we write tuples to outer-batch
 * temp files.  After finishing the first scan, we do the following for
 * each remaining batch:
 *  1. Read tuples from inner batch file, load into hash buckets.
 *  2. Read tuples from outer batch file, match to hash buckets and output.
 * 在内部关系的第一次扫描中,从执行者那里得到了它的元组。
 * 如果nbatch > 1,那么不属于第一批的元组将保存到批内临时文件中。
 * 相同的语句适用于外关系的第一次扫描,但是我们将元组写入外部批处理临时文件。
 * 完成第一次扫描后,我们对每批剩余的元组做如下处理: 
 * 1.从内部批处理文件读取元组,加载到散列桶中。
 * 2.从外部批处理文件读取元组,匹配哈希桶和输出。 
 *
 * It is possible to increase nbatch on the fly if the in-memory hash table
 * gets too big.  The hash-value-to-batch computation is arranged so that this
 * can only cause a tuple to go into a later batch than previously thought,
 * never into an earlier batch.  When we increase nbatch, we rescan the hash
 * table and dump out any tuples that are now of a later batch to the correct
 * inner batch file.  Subsequently, while reading either inner or outer batch
 * files, we might find tuples that no longer belong to the current batch;
 * if so, we just dump them out to the correct batch file.
 * 如果内存中的哈希表太大,可以动态增加nbatch。
 * 散列值到批处理的计算是这样安排的:
 *   这只会导致元组进入比以前认为的更晚的批处理,而不会进入更早的批处理。
 * 当增加nbatch时,重新扫描哈希表,并将现在属于后面批处理的任何元组转储到正确的内部批处理文件。
 * 随后,在读取内部或外部批处理文件时,可能会发现不再属于当前批处理的元组;
 *   如果是这样,只需将它们转储到正确的批处理文件即可。
 * ----------------------------------------------------------------
 */

/* these are in nodes/execnodes.h: */
/* typedef struct HashJoinTupleData *HashJoinTuple; */
/* typedef struct HashJoinTableData *HashJoinTable; */

typedef struct HashJoinTupleData
{
    /* link to next tuple in same bucket */
    //link同一个桶中的下一个元组
    union
    {
        struct HashJoinTupleData *unshared;
        dsa_pointer shared;
    }           next;
    uint32      hashvalue;      /* 元组的hash值;tuple's hash code */
    /* Tuple data, in MinimalTuple format, follows on a MAXALIGN boundary */
}           HashJoinTupleData;

#define HJTUPLE_OVERHEAD  MAXALIGN(sizeof(HashJoinTupleData))
#define HJTUPLE_MINTUPLE(hjtup)  \
    ((MinimalTuple) ((char *) (hjtup) + HJTUPLE_OVERHEAD))

二、源码解读

ExecHashTableCreate
ExecHashTableCreate函数初始化hashjoin需要使用的hashtable.

/*----------------------------------------------------------------------------------------------------
                                    HJ_BUILD_HASHTABLE 阶段
-----------------------------------------------------------------------------------------------------*/

/* ----------------
 *  these are defined to avoid confusion problems with "left"
 *  and "right" and "inner" and "outer".  The convention is that
 *  the "left" plan is the "outer" plan and the "right" plan is
 *  the inner plan, but these make the code more readable.
 *  这些定义是为了避免“左”和“右”以及“内”和“外”的混淆问题。
 *  约定是,“左”计划是“外部”计划,“右”计划是内部计划,但是这些计划使代码更具可读性。
 * ----------------
 */
#define innerPlan(node)         (((Plan *)(node))->righttree)
#define outerPlan(node)         (((Plan *)(node))->lefttree)

/* ----------------------------------------------------------------
 *      ExecHashTableCreate
 *
 *      create an empty hashtable data structure for hashjoin.
 *      初始化hashjoin需要使用的hashtable.
 * ----------------------------------------------------------------
 */
HashJoinTable
ExecHashTableCreate(HashState *state, List *hashOperators, bool keepNulls)
{
    Hash       *node;
    HashJoinTable hashtable;
    Plan       *outerNode;
    size_t      space_allowed;
    int         nbuckets;
    int         nbatch;
    double      rows;
    int         num_skew_mcvs;
    int         log2_nbuckets;
    int         nkeys;
    int         i;
    ListCell   *ho;
    MemoryContext oldcxt;

    /*
     * Get information about the size of the relation to be hashed (it's the
     * "outer" subtree of this node, but the inner relation of the hashjoin).
     * Compute the appropriate size of the hash table.
     * 获取有关要散列的关系大小的信息(它是该节点的“outer”子树,hashjoin的inner relation)。
     * 计算哈希表的适当大小。
     */
    node = (Hash *) state->ps.plan;//获取Hash节点
    outerNode = outerPlan(node);//获取outer relation Plan节点

    /*
     * If this is shared hash table with a partial plan, then we can't use
     * outerNode->plan_rows to estimate its size.  We need an estimate of the
     * total number of rows across all copies of the partial plan.
     * 如果这是带有部分计划(并行处理)的共享哈希表,那么不能使用outerNode->plan_rows来估计它的大小。
     * 需要估算跨部分计划的所有副本的行总数。
     */
    rows = node->plan.parallel_aware ? node->rows_total : outerNode->plan_rows;//获取总行数

    ExecChooseHashTableSize(rows, outerNode->plan_width,
                            OidIsValid(node->skewTable),
                            state->parallel_state != NULL,
                            state->parallel_state != NULL ?
                            state->parallel_state->nparticipants - 1 : 0,
                            &space_allowed,
                            &nbuckets, &nbatch, &num_skew_mcvs);//计算Hash Table的大小尺寸

    /* nbuckets must be a power of 2 */
    //nbuckets(hash桶数)必须是2的n次方
    log2_nbuckets = my_log2(nbuckets);
    Assert(nbuckets == (1 << log2_nbuckets));

    /*
     * Initialize the hash table control block.
     * 初始化hash表的控制块
     *
     * The hashtable control block is just palloc'd from the executor's
     * per-query memory context.  Everything else should be kept inside the
     * subsidiary hashCxt or batchCxt.
     * hashtable控件块是从执行程序的每个查询内存上下文中调取的。
     * 其他内容都应该保存在附属hashCxt或batchCxt中。
     */
    hashtable = (HashJoinTable) palloc(sizeof(HashJoinTableData));//分配内存
    hashtable->nbuckets = nbuckets;//桶数
    hashtable->nbuckets_original = nbuckets;
    hashtable->nbuckets_optimal = nbuckets;
    hashtable->log2_nbuckets = log2_nbuckets;
    hashtable->log2_nbuckets_optimal = log2_nbuckets;
    hashtable->buckets.unshared = NULL;
    hashtable->keepNulls = keepNulls;
    hashtable->skewEnabled = false;
    hashtable->skewBucket = NULL;
    hashtable->skewBucketLen = 0;
    hashtable->nSkewBuckets = 0;
    hashtable->skewBucketNums = NULL;
    hashtable->nbatch = nbatch;
    hashtable->curbatch = 0;
    hashtable->nbatch_original = nbatch;
    hashtable->nbatch_outstart = nbatch;
    hashtable->growEnabled = true;
    hashtable->totalTuples = 0;
    hashtable->partialTuples = 0;
    hashtable->skewTuples = 0;
    hashtable->innerBatchFile = NULL;
    hashtable->outerBatchFile = NULL;
    hashtable->spaceUsed = 0;
    hashtable->spacePeak = 0;
    hashtable->spaceAllowed = space_allowed;
    hashtable->spaceUsedSkew = 0;
    hashtable->spaceAllowedSkew =
        hashtable->spaceAllowed * SKEW_WORK_MEM_PERCENT / 100;
    hashtable->chunks = NULL;
    hashtable->current_chunk = NULL;
    hashtable->parallel_state = state->parallel_state;
    hashtable->area = state->ps.state->es_query_dsa;
    hashtable->batches = NULL;

#ifdef HJDEBUG
    printf("Hashjoin %p: initial nbatch = %d, nbuckets = %d\n",
           hashtable, nbatch, nbuckets);
#endif

    /*
     * Create temporary memory contexts in which to keep the hashtable working
     * storage.  See notes in executor/hashjoin.h.
     * 创建临时内存上下文,以便在其中保持散列表的相关信息。
     * 参见executor/hashjoin.h中的注释。
     */
    hashtable->hashCxt = AllocSetContextCreate(CurrentMemoryContext,
                                               "HashTableContext",
                                               ALLOCSET_DEFAULT_SIZES);

    hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
                                                "HashBatchContext",
                                                ALLOCSET_DEFAULT_SIZES);

    /* Allocate data that will live for the life of the hashjoin */
    //分配内存,切换至hashCxt
    oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);

    /*
     * Get info about the hash functions to be used for each hash key. Also
     * remember whether the join operators are strict.
     * 获取关于每个散列键要使用的散列函数的信息。
     * 还要记住连接操作符是否严格。
     */
    nkeys = list_length(hashOperators);//键值数
    hashtable->outer_hashfunctions =
        (FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));//outer relation所使用的hash函数
    hashtable->inner_hashfunctions =
        (FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));//inner relation所使用的hash函数
    hashtable->hashStrict = (bool *) palloc(nkeys * sizeof(bool));//是否严格的操作符
    i = 0;
    foreach(ho, hashOperators)//遍历hash操作符
    {
        Oid         hashop = lfirst_oid(ho);//hash操作符
        Oid         left_hashfn;//左函数
        Oid         right_hashfn;//右函数
        //获取与给定操作符兼容的标准哈希函数的OID,并根据需要对其LHS和/或RHS数据类型进行操作。
        if (!get_op_hash_functions(hashop, &left_hashfn, &right_hashfn))//获取hash函数
            elog(ERROR, "could not find hash function for hash operator %u",
                 hashop);
        fmgr_info(left_hashfn, &hashtable->outer_hashfunctions[i]);
        fmgr_info(right_hashfn, &hashtable->inner_hashfunctions[i]);
        hashtable->hashStrict[i] = op_strict(hashop);
        i++;
    }

    if (nbatch > 1 && hashtable->parallel_state == NULL)//批次>1而且并行状态为NULL
    {
        /*
         * allocate and initialize the file arrays in hashCxt (not needed for
         * parallel case which uses shared tuplestores instead of raw files)
         * 在hashCxt中分配和初始化文件数组(对于使用共享tuplestore而不是原始文件的并行情况不需要)
         */
        hashtable->innerBatchFile = (BufFile **)
            palloc0(nbatch * sizeof(BufFile *));//用于缓存该批次的inner relation的tuple
        hashtable->outerBatchFile = (BufFile **)
            palloc0(nbatch * sizeof(BufFile *));//用于缓存该批次的outerr relation的tuple
        /* The files will not be opened until needed... */
        /* ... but make sure we have temp tablespaces established for them */
        //这些文件需要时才会打开……
        //…但是要确保为它们建立了临时表空间
        PrepareTempTablespaces();
    }

    MemoryContextSwitchTo(oldcxt);//切换回原内存上下文

    if (hashtable->parallel_state)//并行处理
    {
        ParallelHashJoinState *pstate = hashtable->parallel_state;
        Barrier    *build_barrier;

        /*
         * Attach to the build barrier.  The corresponding detach operation is
         * in ExecHashTableDetach.  Note that we won't attach to the
         * batch_barrier for batch 0 yet.  We'll attach later and start it out
         * in PHJ_BATCH_PROBING phase, because batch 0 is allocated up front
         * and then loaded while hashing (the standard hybrid hash join
         * algorithm), and we'll coordinate that using build_barrier.
         */
        build_barrier = &pstate->build_barrier;
        BarrierAttach(build_barrier);

        /*
         * So far we have no idea whether there are any other participants,
         * and if so, what phase they are working on.  The only thing we care
         * about at this point is whether someone has already created the
         * SharedHashJoinBatch objects and the hash table for batch 0.  One
         * backend will be elected to do that now if necessary.
         */
        if (BarrierPhase(build_barrier) == PHJ_BUILD_ELECTING &&
            BarrierArriveAndWait(build_barrier, WAIT_EVENT_HASH_BUILD_ELECTING))
        {
            pstate->nbatch = nbatch;
            pstate->space_allowed = space_allowed;
            pstate->growth = PHJ_GROWTH_OK;

            /* Set up the shared state for coordinating batches. */
            ExecParallelHashJoinSetUpBatches(hashtable, nbatch);

            /*
             * Allocate batch 0's hash table up front so we can load it
             * directly while hashing.
             */
            pstate->nbuckets = nbuckets;
            ExecParallelHashTableAlloc(hashtable, 0);
        }

        /*
         * The next Parallel Hash synchronization point is in
         * MultiExecParallelHash(), which will progress it all the way to
         * PHJ_BUILD_DONE.  The caller must not return control from this
         * executor node between now and then.
         */
    }
    else//非并行处理
    {
        /*
         * Prepare context for the first-scan space allocations; allocate the
         * hashbucket array therein, and set each bucket "empty".
         * 为第一次扫描空间分配准备上下文;在其中分配hashbucket数组,并将每个bucket设置为“空”。
         */
        MemoryContextSwitchTo(hashtable->batchCxt);//切换上下文

        hashtable->buckets.unshared = (HashJoinTuple *)
            palloc0(nbuckets * sizeof(HashJoinTuple));//分配内存空间

        /*
         * Set up for skew optimization, if possible and there's a need for
         * more than one batch.  (In a one-batch join, there's no point in
         * it.)
         * 如需要多个批处理,设置倾斜优化。(在单批处理连接中,这是没有意义的。)
         */
        if (nbatch > 1)
            ExecHashBuildSkewHash(hashtable, node, num_skew_mcvs);

        MemoryContextSwitchTo(oldcxt);//切换上下文
    }

    return hashtable;//返回Hash表
}

 /*
  * This routine fills a FmgrInfo struct, given the OID
  * of the function to be called.
  * 给定要调用的函数的OID,这个例程填充一个FmgrInfo结构体。
  *
  * The caller's CurrentMemoryContext is used as the fn_mcxt of the info
  * struct; this means that any subsidiary data attached to the info struct
  * (either by fmgr_info itself, or later on by a function call handler)
  * will be allocated in that context.  The caller must ensure that this
  * context is at least as long-lived as the info struct itself.  This is
  * not a problem in typical cases where the info struct is on the stack or
  * in freshly-palloc'd space.  However, if one intends to store an info
  * struct in a long-lived table, it's better to use fmgr_info_cxt.
  * 调用方的CurrentMemoryContext用作info结构体的fn_mcxt;
  * 这意味着附加到info结构体的任何附属数据(通过fmgr_info本身,或者稍后通过函数调用处理程序)将在该上下文中分配。
  * 调用者必须确保这个上下文的生命周期至少与info结构本身一样。
  * 在信息结构位于堆栈上或在新palloc空间中的典型情况下,这不是一个问题。
  * 但是,如果希望在long-lived表中存储信息结构,最好使用fmgr_info_cxt。
  */
 void
 fmgr_info(Oid functionId, FmgrInfo *finfo)
 {
     fmgr_info_cxt_security(functionId, finfo, CurrentMemoryContext, false);
 }
 

ExecChooseHashTableSize
ExecChooseHashTableSize函数根据给定要散列的关系的估计大小(行数和平均行宽),计算适当的散列表大小。


/*
 * Compute appropriate size for hashtable given the estimated size of the
 * relation to be hashed (number of rows and average row width).
 * 给定要散列的关系的估计大小(行数和平均行宽),计算适当的散列表大小。
 *
 * This is exported so that the planner's costsize.c can use it.
 * 这些信息已导出以便计划器costsize.c可以使用
 */

/* Target bucket loading (tuples per bucket) */
#define NTUP_PER_BUCKET         1

void
ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew,
                        bool try_combined_work_mem,
                        int parallel_workers,
                        size_t *space_allowed,
                        int *numbuckets,
                        int *numbatches,
                        int *num_skew_mcvs)
{
    int         tupsize;//元组大小
    double      inner_rel_bytes;//inner relation大小
    long        bucket_bytes;//桶大小
    long        hash_table_bytes;//hash table大小
    long        skew_table_bytes;//倾斜表大小
    long        max_pointers;//最大的指针数
    long        mppow2;//
    int         nbatch = 1;//批次
    int         nbuckets;//桶数
    double      dbuckets;//

    /* Force a plausible relation size if no info */
    //如relation大小没有信息,则设定为默认值1000.0
    if (ntuples <= 0.0)
        ntuples = 1000.0;

    /*
     * Estimate tupsize based on footprint of tuple in hashtable... note this
     * does not allow for any palloc overhead.  The manipulations of spaceUsed
     * don't count palloc overhead either.
     * 根据哈希表中tuple的占用空间估计tupsize…
     * 注意,这不允许任何palloc开销。使用的空间操作也不包括palloc开销。
     */
    tupsize = HJTUPLE_OVERHEAD +
        MAXALIGN(SizeofMinimalTupleHeader) +
        MAXALIGN(tupwidth);//估算元组大小
    inner_rel_bytes = ntuples * tupsize;//inner relation大小

    /*
     * Target in-memory hashtable size is work_mem kilobytes.
     * 目标内存中的散列表大小为work_mem KB。
     */
    hash_table_bytes = work_mem * 1024L;

    /*
     * Parallel Hash tries to use the combined work_mem of all workers to
     * avoid the need to batch.  If that won't work, it falls back to work_mem
     * per worker and tries to process batches in parallel.
     * 并行散列试图使用所有worker的所有work_mem来避免分批处理。
     * 如果这不起作用,它将返回到每个worker的work_mem,并尝试并行处理批处理。
     */
    if (try_combined_work_mem)//尝试融合work_mem
        hash_table_bytes += hash_table_bytes * parallel_workers;

    *space_allowed = hash_table_bytes;

    /*
     * If skew optimization is possible, estimate the number of skew buckets
     * that will fit in the memory allowed, and decrement the assumed space
     * available for the main hash table accordingly.
     * 如果可以进行倾斜优化,估算允许内存中容纳的倾斜桶的数量,并相应地减少主哈希表的假定可用空间。
     *
     * We make the optimistic assumption that each skew bucket will contain
     * one inner-relation tuple.  If that turns out to be low, we will recover
     * at runtime by reducing the number of skew buckets.
     * 我们乐观地假设,每个倾斜桶将包含一个内部关系元组。
     * 如果结果很低,将通过减少倾斜桶的数量在运行时进行恢复。
     *
     * hashtable->skewBucket will have up to 8 times as many HashSkewBucket
     * pointers as the number of MCVs we allow, since ExecHashBuildSkewHash
     * will round up to the next power of 2 and then multiply by 4 to reduce
     * collisions.
     * hashtable->skewBucket的指针数量将是允许的mcv数量的8倍,
     *   因为ExecHashBuildSkewHash将四舍五入到下一个2次方,然后乘以4以减少冲突。
     */
    if (useskew)
    {
        //倾斜优化
        skew_table_bytes = hash_table_bytes * SKEW_WORK_MEM_PERCENT / 100;

        /*----------
         * Divisor is:
         * size of a hash tuple +
         * worst-case size of skewBucket[] per MCV +
         * size of skewBucketNums[] entry +
         * size of skew bucket struct itself
         *----------
         */
        *num_skew_mcvs = skew_table_bytes / (tupsize +
                                             (8 * sizeof(HashSkewBucket *)) +
                                             sizeof(int) +
                                             SKEW_BUCKET_OVERHEAD);
        if (*num_skew_mcvs > 0)
            hash_table_bytes -= skew_table_bytes;
    }
    else
        *num_skew_mcvs = 0;//不使用倾斜优化,默认为0

    /*
     * Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when
     * memory is filled, assuming a single batch; but limit the value so that
     * the pointer arrays we'll try to allocate do not exceed work_mem nor
     * MaxAllocSize.
     * 设置nbuckets,假设为单批处理,当内存被填满时,实现NTUP_PER_BUCKET的平均桶负载;
     *   但是要限制这个值,以便试图分配的指针数组不会超过work_mem或MaxAllocSize。
     *
     * Note that both nbuckets and nbatch must be powers of 2 to make
     * ExecHashGetBucketAndBatch fast.
     * 注意,nbucket和nbatch都必须是2的幂,才能使ExecHashGetBucketAndBatch更快。
     */
    max_pointers = *space_allowed / sizeof(HashJoinTuple);//最大指针数
    max_pointers = Min(max_pointers, MaxAllocSize / sizeof(HashJoinTuple));//控制上限
    /* If max_pointers isn't a power of 2, must round it down to one */
    //如果max_pointer不是2的幂,则必须四舍五入到符合规则的某个值(如110.1 --> 128)
    mppow2 = 1L << my_log2(max_pointers);
    if (max_pointers != mppow2)
        max_pointers = mppow2 / 2;

    /* Also ensure we avoid integer overflow in nbatch and nbuckets */
    /* (this step is redundant given the current value of MaxAllocSize) */
    //还要确保在nbatch和nbucket中避免整数溢出
    //(鉴于MaxAllocSize的当前值,此步骤是多余的)
    max_pointers = Min(max_pointers, INT_MAX / 2);//设定上限

    dbuckets = ceil(ntuples / NTUP_PER_BUCKET);//取整
    dbuckets = Min(dbuckets, max_pointers);//设定上限
    nbuckets = (int) dbuckets;//桶数
    /* don't let nbuckets be really small, though ... */
    //但是,不要让nbucket非常小……
    nbuckets = Max(nbuckets, 1024);//设定下限(1024)
    /* ... and force it to be a power of 2. */
    //2的幂
    nbuckets = 1 << my_log2(nbuckets);

    /*
     * If there's not enough space to store the projected number of tuples and
     * the required bucket headers, we will need multiple batches.
     * 如果没有足够的空间来存储预计的元组数量和所需的bucket headers,将需要多个批处理。
     */
    bucket_bytes = sizeof(HashJoinTuple) * nbuckets;
    if (inner_rel_bytes + bucket_bytes > hash_table_bytes)//inner relation大小 + 桶数大于可用空间
    {
        /* We'll need multiple batches */
        //需要多批次
        long        lbuckets;
        double      dbatch;
        int         minbatch;
        long        bucket_size;

        /*
         * If Parallel Hash with combined work_mem would still need multiple
         * batches, we'll have to fall back to regular work_mem budget.
         * 如果合并了work_mem的并行散列仍然需要多个批处理,将不得不回到常规的work_mem预算。
         */
        if (try_combined_work_mem)
        {
            ExecChooseHashTableSize(ntuples, tupwidth, useskew,
                                    false, parallel_workers,
                                    space_allowed,
                                    numbuckets,
                                    numbatches,
                                    num_skew_mcvs);
            return;
        }

        /*
         * Estimate the number of buckets we'll want to have when work_mem is
         * entirely full.  Each bucket will contain a bucket pointer plus
         * NTUP_PER_BUCKET tuples, whose projected size already includes
         * overhead for the hash code, pointer to the next tuple, etc.
         * 估计work_mem完全用完时需要的桶数。
         * 每个桶将包含一个桶指针和NTUP_PER_BUCKET元组,
         *   其投影大小已经包括哈希码的开销、指向下一个元组的指针等等。
         */
        bucket_size = (tupsize * NTUP_PER_BUCKET + sizeof(HashJoinTuple));//桶大小
        lbuckets = 1L << my_log2(hash_table_bytes / bucket_size);
        lbuckets = Min(lbuckets, max_pointers);
        nbuckets = (int) lbuckets;
        nbuckets = 1 << my_log2(nbuckets);
        bucket_bytes = nbuckets * sizeof(HashJoinTuple);

        /*
         * Buckets are simple pointers to hashjoin tuples, while tupsize
         * includes the pointer, hash code, and MinimalTupleData.  So buckets
         * should never really exceed 25% of work_mem (even for
         * NTUP_PER_BUCKET=1); except maybe for work_mem values that are not
         * 2^N bytes, where we might get more because of doubling. So let's
         * look for 50% here.
         * Buckets是指向hashjoin元组的简单指针,而tupsize包含指针、散列代码和MinimalTupleData。
         * 所以Buckets的实际大小不应该超过work_mem的25%(即使对于NTUP_PER_BUCKET=1);
         *   除了work_mem值不是2 ^ N个字节这个原因外,翻倍可能会得到更多的,这里试着使用50%
         */
        Assert(bucket_bytes <= hash_table_bytes / 2);

        /* Calculate required number of batches. */
        //计算批次数
        dbatch = ceil(inner_rel_bytes / (hash_table_bytes - bucket_bytes));
        dbatch = Min(dbatch, max_pointers);
        minbatch = (int) dbatch;
        nbatch = 2;
        while (nbatch < minbatch)
            nbatch <<= 1;
    }

    Assert(nbuckets > 0);
    Assert(nbatch > 0);

    *numbuckets = nbuckets;
    *numbatches = nbatch;
}

三、跟踪分析

测试脚本如下

testdb=# set enable_nestloop=false;
SET
testdb=# set enable_mergejoin=false;
SET
testdb=# explain verbose select dw.*,grjf.grbh,grjf.xm,grjf.ny,grjf.je 
testdb-# from t_dwxx dw,lateral (select gr.grbh,gr.xm,jf.ny,jf.je 
testdb(#                         from t_grxx gr inner join t_jfxx jf 
testdb(#                                        on gr.dwbh = dw.dwbh 
testdb(#                                           and gr.grbh = jf.grbh) grjf
testdb-# order by dw.dwbh;
                                          QUERY PLAN                                           
-----------------------------------------------------------------------------------------------
 Sort  (cost=14828.83..15078.46 rows=99850 width=47)
   Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je
   Sort Key: dw.dwbh
   ->  Hash Join  (cost=3176.00..6537.55 rows=99850 width=47)
         Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm, jf.ny, jf.je
         Hash Cond: ((gr.grbh)::text = (jf.grbh)::text)
         ->  Hash Join  (cost=289.00..2277.61 rows=99850 width=32)
               Output: dw.dwmc, dw.dwbh, dw.dwdz, gr.grbh, gr.xm
               Inner Unique: true
               Hash Cond: ((gr.dwbh)::text = (dw.dwbh)::text)
               ->  Seq Scan on public.t_grxx gr  (cost=0.00..1726.00 rows=100000 width=16)
                     Output: gr.dwbh, gr.grbh, gr.xm, gr.xb, gr.nl
               ->  Hash  (cost=164.00..164.00 rows=10000 width=20)
                     Output: dw.dwmc, dw.dwbh, dw.dwdz
                     ->  Seq Scan on public.t_dwxx dw  (cost=0.00..164.00 rows=10000 width=20)
                           Output: dw.dwmc, dw.dwbh, dw.dwdz
         ->  Hash  (cost=1637.00..1637.00 rows=100000 width=20)
               Output: jf.ny, jf.je, jf.grbh
               ->  Seq Scan on public.t_jfxx jf  (cost=0.00..1637.00 rows=100000 width=20)
                     Output: jf.ny, jf.je, jf.grbh
(20 rows)

启动gdb,设置断点,进入ExecHashTableCreate

(gdb) b ExecHashTableCreate
Breakpoint 1 at 0x6fc75d: file nodeHash.c, line 449.
(gdb) c
Continuing.

Breakpoint 1, ExecHashTableCreate (state=0x1e3cbc8, hashOperators=0x1e59890, keepNulls=false) at nodeHash.c:449
449     node = (Hash *) state->ps.plan;

获取相关信息

449     node = (Hash *) state->ps.plan;
(gdb) n
450     outerNode = outerPlan(node);
(gdb) 
457     rows = node->plan.parallel_aware ? node->rows_total : outerNode->plan_rows;
(gdb) 
462                             state->parallel_state != NULL ?
(gdb) 
459     ExecChooseHashTableSize(rows, outerNode->plan_width,
(gdb) 

获取Hash节点;
outer节点为顺序扫描SeqScan节点
inner(构造hash表的relation)行数为10000

(gdb) p *node
$1 = {plan = {type = T_Hash, startup_cost = 164, total_cost = 164, plan_rows = 10000, plan_width = 20, 
    parallel_aware = false, parallel_safe = true, plan_node_id = 4, targetlist = 0x1e4bf90, qual = 0x0, 
    lefttree = 0x1e493e8, righttree = 0x0, initPlan = 0x0, extParam = 0x0, allParam = 0x0}, skewTable = 16977, 
  skewColumn = 1, skewInherit = false, rows_total = 0}
(gdb) p *outerNode
$2 = {type = T_SeqScan, startup_cost = 0, total_cost = 164, plan_rows = 10000, plan_width = 20, parallel_aware = false, 
  parallel_safe = true, plan_node_id = 5, targetlist = 0x1e492b0, qual = 0x0, lefttree = 0x0, righttree = 0x0, 
  initPlan = 0x0, extParam = 0x0, allParam = 0x0}
(gdb) p rows
$3 = 10000
(gdb) 

进入ExecChooseHashTableSize函数

(gdb) step
ExecChooseHashTableSize (ntuples=10000, tupwidth=20, useskew=true, try_combined_work_mem=false, parallel_workers=0, 
    space_allowed=0x7ffdcf148540, numbuckets=0x7ffdcf14853c, numbatches=0x7ffdcf148538, num_skew_mcvs=0x7ffdcf148534)
    at nodeHash.c:677
677     int         nbatch = 1;

ExecChooseHashTableSize->计算元组大小(56B)/inner relation大小(约560K)/hash表空间(16M)

(gdb) n
682     if (ntuples <= 0.0)
(gdb) 
690     tupsize = HJTUPLE_OVERHEAD +
(gdb) 
693     inner_rel_bytes = ntuples * tupsize;
(gdb) 
698     hash_table_bytes = work_mem * 1024L;
(gdb) 
705     if (try_combined_work_mem)
(gdb) p tupsize
$4 = 56
(gdb) p inner_rel_bytes
$5 = 560000
(gdb) p hash_table_bytes
$6 = 16777216

ExecChooseHashTableSize->使用数据倾斜优化(所需空间从Hash Table中获取)

(gdb) n
708     *space_allowed = hash_table_bytes;
(gdb) 
724     if (useskew)
(gdb) 
726         skew_table_bytes = hash_table_bytes * SKEW_WORK_MEM_PERCENT / 100;
(gdb) p useskew
$8 = true
(gdb) p hash_table_bytes
$9 = 16441672
(gdb) p skew_table_bytes
$10 = 335544
(gdb) p num_skew_mcvs
$11 = (int *) 0x7ffdcf148534
(gdb) p *num_skew_mcvs
$12 = 2396
(gdb) 

ExecChooseHashTableSize->获取最大指针数目(2097152)

(gdb) n
756     max_pointers = Min(max_pointers, MaxAllocSize / sizeof(HashJoinTuple));
(gdb) 
758     mppow2 = 1L << my_log2(max_pointers);
(gdb) n
759     if (max_pointers != mppow2)
(gdb) p max_pointers
$13 = 2097152
(gdb) p mppow2
$15 = 2097152

ExecChooseHashTableSize->计算Hash桶数

(gdb) n
764     max_pointers = Min(max_pointers, INT_MAX / 2);
(gdb) 
766     dbuckets = ceil(ntuples / NTUP_PER_BUCKET);
(gdb) 
767     dbuckets = Min(dbuckets, max_pointers);
(gdb) 
768     nbuckets = (int) dbuckets;
(gdb) 
770     nbuckets = Max(nbuckets, 1024);
(gdb) 
772     nbuckets = 1 << my_log2(nbuckets);
(gdb) 
778     bucket_bytes = sizeof(HashJoinTuple) * nbuckets;
(gdb) n
779     if (inner_rel_bytes + bucket_bytes > hash_table_bytes)
(gdb) 
834     Assert(nbuckets > 0);
(gdb) p dbuckets
$16 = 10000
(gdb) p nbuckets
$17 = 16384
(gdb) p bucket_bytes
$18 = 131072

ExecChooseHashTableSize->只需要一个批次,赋值,返回

835     Assert(nbatch > 0);
(gdb) 
837     *numbuckets = nbuckets;
(gdb) 
838     *numbatches = nbatch;
(gdb) 
839 }
(gdb) 
(gdb) 
ExecHashTableCreate (state=0x1e3cbc8, hashOperators=0x1e59890, keepNulls=false) at nodeHash.c:468
468     log2_nbuckets = my_log2(nbuckets);

初始化Hash表

468     log2_nbuckets = my_log2(nbuckets);
(gdb) p nbuckets
$19 = 16384
(gdb) n
469     Assert(nbuckets == (1 << log2_nbuckets));
(gdb) 
478     hashtable = (HashJoinTable) palloc(sizeof(HashJoinTableData));
(gdb) 
479     hashtable->nbuckets = nbuckets;
...

分配内存上下文

...
(gdb) 
522     hashtable->hashCxt = AllocSetContextCreate(CurrentMemoryContext,
(gdb) 
526     hashtable->batchCxt = AllocSetContextCreate(hashtable->hashCxt,
(gdb) 
532     oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
(gdb) 

切换上下文,并初始化hash函数

(gdb) 
532     oldcxt = MemoryContextSwitchTo(hashtable->hashCxt);
(gdb) n
538     nkeys = list_length(hashOperators);
(gdb) 
540         (FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
(gdb) p nkeys
$20 = 1
(gdb) n
539     hashtable->outer_hashfunctions =
(gdb) 
542         (FmgrInfo *) palloc(nkeys * sizeof(FmgrInfo));
(gdb) 
541     hashtable->inner_hashfunctions =
(gdb) 
543     hashtable->hashStrict = (bool *) palloc(nkeys * sizeof(bool));
(gdb) 
544     i = 0;

初始化Hash操作符

(gdb) n
545     foreach(ho, hashOperators)
(gdb) 
547         Oid         hashop = lfirst_oid(ho);
(gdb) 
551         if (!get_op_hash_functions(hashop, &left_hashfn, &right_hashfn))
(gdb) 
554         fmgr_info(left_hashfn, &hashtable->outer_hashfunctions[i]);
(gdb) 
555         fmgr_info(right_hashfn, &hashtable->inner_hashfunctions[i]);
(gdb) 
556         hashtable->hashStrict[i] = op_strict(hashop);
(gdb) 
557         i++;
(gdb) 
545     foreach(ho, hashOperators)
(gdb) p *hashtable->hashStrict
$21 = true
(gdb) n
560     if (nbatch > 1 && hashtable->parallel_state == NULL)

分配hash桶内存空间

gdb) n
575     MemoryContextSwitchTo(oldcxt);
(gdb) 
577     if (hashtable->parallel_state)
(gdb) 
631         MemoryContextSwitchTo(hashtable->batchCxt);
(gdb) 
634             palloc0(nbuckets * sizeof(HashJoinTuple));
(gdb) 
633         hashtable->buckets.unshared = (HashJoinTuple *)
(gdb) p nbuckets
$23 = 16384

构造完成,返回hash表

(gdb) n
641         if (nbatch > 1)
(gdb) 
644         MemoryContextSwitchTo(oldcxt);
(gdb) 
647     return hashtable;
(gdb) 
648 }
(gdb) 
ExecHashJoinImpl (pstate=0x1e3c048, parallel=false) at nodeHashjoin.c:282
282                 node->hj_HashTable = hashtable;
(gdb) 

DONE!

四、参考资料

Hash Joins: Past, Present and Future/PGCon 2017
A Look at How Postgres Executes a Tiny Join - Part 1
A Look at How Postgres Executes a Tiny Join - Part 2
Assignment 2 Symmetric Hash Join

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI