为什么在MySQL双主单写的情况下主库偶尔出现大量延迟,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
我们是双主单写,这里约定写入的库为主库,没有写入的库为从库。我们的falcon偶尔会进行报警如下(频率很低):
这是非常奇怪的,按理说我是单写的从库没有做任何操作(除了应用Event以外),主库哪来的延迟,并且延迟这么大。在我映像中有朋友问过这个问题,当时没有细细研究。
我们还是要看看主从计算延迟的伪代码:
/* The pseudo code to compute Seconds_Behind_Master: if (SQL thread is running) //如果SQL线程启动了 { if (SQL thread processed all the available relay log) //如果SQL线程已经应用完了所有的IO线程写入的Event { if (IO thread is running) //如果IO线程启动了 print 0; //设置延迟为0 else print NULL; //否则为空值 } else compute Seconds_Behind_Master; //如果SQL线程没有应用完所有的IO线程写入的Event,那么需要计算延迟。 } else print NULL; //如果连SQL线程也没有启动则设置为空值 */
计算延迟的公式为:
long time_diff= ((long)(time(0) - mi->rli->last_master_timestamp) - mi->clock_diff_with_master); 也就是: 服务器当前时间-Event header中的timestamp - 主从服务器时间差
出现延迟的必要条件:
如果SQL线程没有应用完了所有的IO线程写入的Event,也就是Read_Master_Log_Pos和Exec_Master_Log_Pos存在一定的差值。判定标准为
(mi->get_master_log_pos() == mi->rli->get_group_master_log_pos()) && (!strcmp(mi->get_master_log_name(), mi->rli->get_group_master_log_name()))
抛开文件名,也就是通过 IO线程读取到主库binary log的位置 和 SQL线程应用到的主库binary log位置进行比较来进行 判断,只要他们出现差值就会进入延迟计算环节。
服务器当前时间-Event header中的timestamp - 主从服务器时间差 这个公式必须出现差值。
好了接下来带着这两个产生延迟的必要条件来寻求原因。
1.主库:首先主库写到从库的Event,从库会写入到binlog(log_slave_updates 开启),并且从库的DUMP线程会发送给主库,但是主库的IO线程通过SERVER_ID进程判定,将Event进行过滤,不写入主库的relay log,同时会更新主库IO线程读取的位置(Read_Master_Log_Pos),并且更新忽略到的位置(rli->ign_master_log_name_end[0])。代码如下:
if (!(s_id == ::server_id && !mi->rli->replicate_same_server_id) || (event_type != binary_log::FORMAT_DESCRIPTION_EVENT && event_type != binary_log::ROTATE_EVENT && event_type != binary_log::STOP_EVENT)) { mi->set_master_log_pos(mi->get_master_log_pos() + inc_pos);//增加Read_Master_Log_Pos位点,为当前位置 memcpy(rli->ign_master_log_name_end, mi->get_master_log_name(), FN_REFLEN); //进行拷贝 DBUG_ASSERT(rli->ign_master_log_name_end[0]); //断言存在 rli->ign_master_log_pos_end= mi->get_master_log_pos(); //忽略到位点 }
主库:SQL线程会通过rli->ign_master_log_name_end[0]判定是否有需要跳过的Event,如果有则构建一个Rotate_log_event来跳过这个Event,代码如下:
if (rli->ign_master_log_name_end[0]) //如果跳过的Event存在 { /* We generate and return a Rotate, to make our positions advance */ DBUG_PRINT("info",("seeing an ignored end segment")); ev= new Rotate_log_event(rli->ign_master_log_name_end, 0, rli->ign_master_log_pos_end, exec_relay_log_event Rotate_log_event::DUP_NAME); //构建一个Rotate Event,位置为 rli->ign_master_log_name_end[0]= 0; //rli->ign_master_log_pos_end,执行这个Event就可以 mysql_mutex_unlock(log_lock);exec_relay_log_event //来更新Exec_Master_Log_Pos位点 if (unlikely(!ev)) { errmsg= "Slave SQL thread failed to create a Rotate event " "(out of memory?), SHOW SLAVE STATUS may be inaccurate"; goto err; } ev->server_id= 0; // don't be ignored by slave SQL thread DBUG_RETURN(ev); }
好了到这里我们知道了Event在主库是如何跳过的,但是注意IO线程和SQL线程在处理Read_Master_Log_Pos和Exec_Master_Log_Pos的时候可能有一定的时间差,那么Read_Master_Log_Pos和Exec_Master_Log_Pos存在一定的差值 的条件就可能会满足,则进入延迟计算环节。
主库的SQL线程平时并没有读取到Event,因为所有的Event都被IO线程过滤掉了。因此
Event的 header中的timestamp 不会更新(MTS)。但是如果从库binlog切换的时候,从库至少会传送ROTATE_EVENT给主库,这个时候主库会拿到这个实际的Event,因此Event的 header中的timestamp 更新了。 如果刚好遇到主库的IO线程的Read_Master_Log_Pos和Exec_Master_Log_Pos有差值,
那么falcon去查看延迟就会得到一个延迟很大的假象,延迟的计算公式就会变为如下:
主库当前的时候 - 从库上次binlog切换的时间 - 主从时间的差值
MTS和单线程的不同
上面的第3点只适用于MTS,单SQL线程不同,会去将last_master_timestamp设置为0,代码如下:
if (!rli->is_parallel_exec()) rli->last_master_timestamp= 0;
言外之意单SQL线程计算延迟的公式为:
主库当前的时间 - 1970年1月1日0点 - 主从时间的差值
因此看起来计算出来的延迟会更大。
最后需要注意的是实际上这种情况的延迟并没有问题,完全是一种偶尔出现的计算上的问题,是一种假象,如果主库的压力越大出现这种情况的可能性就会越大,因为IO线程和SQL线程在处理Read_Master_Log_Pos和Exec_Master_Log_Pos的出现时间差的可能性就会越大。
其实知道了原理就很容易debug了,因为我们可以将断点放到主库的show_slave_status_send_data函数上,那么就能看出来了,做的操作如下:
从库flush binary logs
主库执行一些insert操作
主库show slave status
这个时候我们可以跳过(Read_Master_Log_Pos和Exec_Master_Log_Pos存在一定的差值)这个条件,直接通过公式去计算,得到如下结果:
(gdb) p (long)(time(0)- mi->rli->last_master_timestamp)- mi->clock_diff_with_master $6 = 37
延迟就是37秒,因此我们的理论得到了验证。
下面一个debug结果是单SQL线程的,可以看到延迟更是大得离谱。
(gdb) p (long)(time(0)- mi->rli->last_master_timestamp)- mi->clock_diff_with_master $7 = 1592672402
额外的问题:
如果双主双写
S1 | S2 |
---|---|
T1 | |
T2 | |
T3 |
如果按照上面的理论那么T3的更新的位置可能会被,T2事务的位点重置。因为主库的SQL线程通过构建的Rotate_log_event可能会出现Exec_Master_Log_Pos倒退的可能性,这显然是不行的。但是代码中构建Rotate_log_event的逻辑包裹在如下逻辑下面。
if (!cur_log->error) /* EOF */ //当前relay log 已经读取完了 { /* On a hot log, EOF means that there are no more updates to process and we must block until I/O thread adds some and signals us to continue */ if (hot_log) //如果是 当前relay log
我们可以看到只有在当前 relay log读取完成后才会进行Rotate_log_event的构建。因此不存在此问题。
问题如上虽然不构建Rotate_log_event,但是如果rli->ign_master_log_name_end[0]如果一直保留那么当relay log应用完成后,依旧会去构建Rotate_log_event导致Exec_Master_Log_Pos倒退,实际上这个问题也不会出现,因为在每次IO线程Event写入到relay log后会重置,如下:
rli->ign_master_log_name_end[0]= 0; // last event is not ignored
看完上述内容,你们掌握为什么在MySQL双主单写的情况下主库偶尔出现大量延迟的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。