本篇内容主要讲解“大数据对社会发展的影响有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“大数据对社会发展的影响有哪些”吧!
(1)大数据决策成为一种新的决策方式
根据数据制定决策,并非大数据时代所特有。从20世纪90年代开始,数据仓库和商务智能工具就开始大量用于企业决策。发展到今天,数据仓库已经是一个集成的信息存储仓库,既具备批量和周期性的数据加载能力,也具备数据变化的实时探测、传播和加载能力,并能结合历史数据和实时数据实现查询分析和自动规则触发,从而提供对战略决策(如宏观决策和长远规划等)和战 术决策(如实时营销和个性化服务等)的双重支持。但是,数据仓库以关系数据库为基础,无论是数据类型还是数据量方面都存在较大的限制。现在,大数据决策可以面向类型繁多的、非结构化的海量数据进行决策分析,已经成为受到追捧的全新决策方式。比如,政府部门可以把大数据技术融入“舆情分析”,通过对论坛、微 博、微 信、社区等多种来源数据进行综合分析,弄清或测验信息中本质性的事实和趋势,揭示信息中含有的隐性情报内容,对事物发展做出情报预测,协助实现政府决策,有效应对各种突发事件。
(2)大数据应用促进信息技术与各行业的深度融合
有专家指出,大数据将会在未来10年改变几乎每一个行业的业务功能。互联网、银行、保险、交通、材料、能源、服务等行业领域,不断累积的大数据将加速推进这些行业与信息技术的深度融合,开拓行业发展的新方向。比如,大数据可以帮助快递公司选择运费成本最低的最佳行车路径,协助投资者选择收益最大化的股票投资组合,辅助零售商有效定位目标客户群体,帮助互联网公司实现广告精准投放,还可以让电力公司做好配送电计划确保电网安全等。总之,大数据所触及的每个角落,我们的社会生产和生活都会因之而发生巨大而深刻的变化。
(3)大数据开发推动新技术和新应用的不断涌现
大数据的应用需求,是大数据新技术开发的源泉。在各种应用需求的强烈驱动下,各种突破性的大数据技术将被不断提出并得到广泛应用,数据的能量也将不断得到释放。在不远的将来,原来那些依靠人类自身判断力的领域应用,将逐渐被各种基于大数据的应用所取代。比如,今天的汽车保险公司,只能凭借少量的车主信息,对客户进行简单类别划分,并根据客户的汽车出险次数给予相应的保费优惠方案,客户选择哪家保险公司都没有太大差别。随着车联网的出现,“汽车大数据”将会深刻改变汽车保险业的商业模式,如果某家商业保险公司能够获取客户车辆的相关细节信息,并利用事先构建的数学模型对客户等级进行更加细致的判定,给予更加个性化的“一对一”优惠方案,那么,毫无疑问,这家保险公司将具备明显的市场竞争优势,获得更多客户的青睐。
4 大数据对就业市场的影响
大数据的兴起使得数据科学家成为热门职业。2010年的时候,在高科技劳动力市场上还很难见到数据科学家的头衔,但此后,数据科学家逐渐发展成为市场上最热门的职位之一,具有广阔发展前景,并代表着未来的发展方向。
互联网企业和零售、金融类企业都在积极争夺大数据人才,数据科学家成为大数据时代最紧缺的人才。据麦肯锡预测,在未来几年内,仅美国本土就可能缺少14万~19万具备数据深入分析能力的专业人才,能够通过分析大数据支撑企业做出有效决策的数据管理人员和分析师,也大概存在150万人的缺口。
根据中桥调研咨询2013年7月针对中国市场的一次调研结果显示,中国用户目前还主要局限在结构化数据分析方面,尚未进入通过对半结构化和非结构化数据进行分析、捕捉新的市场空间的阶段。但是,大数据中包含了大量的非结构化数据,未来将会产生大量针对非结构化数据分析的市场需求,因此,未来中国市场对掌握大数据分析专业技能的数据科学家的需求会逐年递增。
尽管有少数人认为,未来有更多的数据会采用自动化处理,会逐步降低对数据科学家的需求,但是,仍然有更多的人认为,随着数据科学家给企业所带来的商业价值的日益体现,市场对数据科学家的需求会越发旺盛。
5 大数据对人才培养的影响
大数据的兴起,将在很大程度上改变中国高校信息技术相关专业的现有教学和科研体制。一方面,数据科学家是一个需要掌握统计、数学、机器学习、可视化、编程等多方面知识的复合型人才,在中国高校现有的学科和专业设置中,上述专业知识分布在数学、统计和计算机等多个学科中,任何一个学科都只能培养某个方向的专业人才,无法培养全面掌握数据科学相关知识的复合型人才。另一方面,数据科学家需要大数据应用实战环境,在真正的大数据环境中不断学习、实践并融会贯通,将自身技术背景与所在行业业务需求进行深度融合,从数据中发现有价值的信息,但是,目前大多高校还不具备这种培养环境,不仅缺乏大规模基础数据,也缺乏对领域业务需求的理解。鉴于上述两个原因,目前国内的数据科学家人才并不是由高校培养的,而主要是在企业实际应用环境中通过边工作边学习的方式不断成长起来的,其中,互联网领域集中了大多数的数据科学家人才。
在未来5~10年,市场对数据科学家的需求会日益增加,不仅互联网企业需要数据科学家,类似金融、电信这样的传统企业在大数据项目中也需要数据科学家。由于高校目前尚未具备大量培养数据科学家的基础和能力,传统企业很可能会从互联网行业“挖墙角”,来满足企业发展对数据分析人才的需求,继而造成用人成本高企,制约企业的成长壮大。因此,高校应该秉承“培养人才、服务社会”的理念,充分发挥科研和教学综合优势,培养一大批具备数据分析基础能力的数据科学家,有效缓解数据科学家的市场缺口,为促进经济社会发展做出更大贡献。
高校培养数据科学家人才需要采取“两条腿”走路的策略,即“引进来”和“走出去”。所谓“引进来”,是指高校要加强与企业的紧密合作,从企业引进相关数据,为学生搭建起接近企业应用实际的、仿真的大数据实战环境,让学生有机会理解企业业务需求和数据形式,为开展数据分析奠定基础,同时,从企业引进具有丰富实战经验的高级人才,承担起数据科学家相关课程教学任务,切实提高教学质量、水平和实用性。所谓“走出去”,是指积极鼓励和引导学生走出校园,进入互联网、金融、电信等具备大数据应用环境的企业去开展实践活动,同时,努力加强产、学、研合作,创造条件让高校教师参与到企业大数据项目中,实现理论知识与实际应用的深层次融合,锻炼高校教师的大数据实战能力,为更好培养数据科学家人才奠定基础。
在课程体系的设计上,高校应该打破学科界限,设置跨院系跨学科的“组合课程”,由来自计算机、数学、统计等不同院系的教师构建联合教学师资力量,多方合作,共同培养具备大数据分析基础能力的数据科学家,使其全面掌握包括数学、统计学、数据分析、商业分析和自然语言处理等在内的系统知识,具有独立获取知识的能力,并具有较强的实践能力和创新意识。
到此,相信大家对“大数据对社会发展的影响有哪些”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。