spark性能优化要注意哪几点,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。
默认用的是java序列化,但是会很慢,第二种很快,但是不一定能实现所有序列化 第二种,有些自定义类你需要在代码中注册(Kryo)
def main(args: Array[String]) { val sparkConf = new SparkConf() val sc = new SparkContext(sparkConf) val names = Array[String]("G304","G305","G306") val genders = Array[String]("male","female") val addresses = Array[String]("beijing","shenzhen","wenzhou","hangzhou") val infos = new ArrayBuffer[Info]() for (i<-1 to 1000000){ val name = names(Random.nextInt(3)) val gender = genders(Random.nextInt(2)) val address = addresses((Random.nextInt(4))) infos += Info(name, gender, address) } val rdd = sc.parallelize(infos) rdd.persist(StorageLevel.MEMORY_ONLY_SER) rdd.count() // rdd.persist(StorageLevel.MEMORY_ONLY) sc.stop() } case class Info(name:String, gender:String, address:String) }
def main(args: Array[String]) { val sparkConf = new SparkConf() sparkConf.registerKryoClasses(Array(classOf[Info])) val sc = new SparkContext(sparkConf) val names = Array[String]("G304","G305","G306") val genders = Array[String]("male","female") val addresses = Array[String]("beijing","shenzhen","wenzhou","hangzhou") val infos = new ArrayBuffer[Info]() for (i<-1 to 1000000){ val name = names(Random.nextInt(3)) val gender = genders(Random.nextInt(2)) val address = addresses((Random.nextInt(4))) infos += Info(name, gender, address) } val rdd = sc.parallelize(infos) rdd.persist(StorageLevel.MEMORY_ONLY_SER) rdd.count() // rdd.persist(StorageLevel.MEMORY_ONLY_SER) sc.stop()
sparkConf.registerKryoClasses(Array(classOf[Info]))
看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注亿速云行业资讯频道,感谢您对亿速云的支持。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。