温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

storm-kafka-client使用的示例分析

发布时间:2021-12-15 15:50:52 来源:亿速云 阅读:150 作者:柒染 栏目:大数据

storm-kafka-client使用的示例分析,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

package hgs.core.sk;
import java.util.Map;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.kafka.spout.ByTopicRecordTranslator;
import org.apache.storm.kafka.spout.KafkaSpout;
import org.apache.storm.kafka.spout.KafkaSpoutConfig;
import org.apache.storm.kafka.spout.KafkaSpoutConfig.FirstPollOffsetStrategy;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;
//参考如下
//https://community.hortonworks.com/articles/87597/how-to-write-topology-with-the-new-kafka-spout-cli.html
//https://github.com/apache/storm/blob/master/examples/storm-kafka-client-examples/src/main/java/org/apache/storm/kafka/spout/KafkaSpoutTopologyMainNamedTopics.java#L52
public class StormKafkaMainTest {
	
	public static void main(String[] args) {
		TopologyBuilder builder = new TopologyBuilder();
		//该类将传入的kafka记录转换为storm的tuple
		ByTopicRecordTranslator<String,String> brt = 
				new ByTopicRecordTranslator<>( (r) -> new Values(r.value(),r.topic()),new Fields("values","test7"));
		//设置要消费的topic即test7
		brt.forTopic("test7", (r) -> new Values(r.value(),r.topic()), new Fields("values","test7"));
		//类似之前的SpoutConfig
		KafkaSpoutConfig<String,String> ksc = KafkaSpoutConfig
				//bootstrapServers 以及topic(test7)
				.builder("bigdata01:9092,bigdata02:9092,bigdata03:9092", "test7")
				//设置group.id
				.setProp(ConsumerConfig.GROUP_ID_CONFIG, "skc-test")
				//设置开始消费的气势位置
				.setFirstPollOffsetStrategy(FirstPollOffsetStrategy.LATEST)
				//设置提交消费边界的时长间隔
				.setOffsetCommitPeriodMs(10_000)
				//Translator
				.setRecordTranslator(brt)
				.build();
		
		builder.setSpout("kafkaspout", new KafkaSpout<>(ksc), 2);
		builder.setBolt("mybolt1", new MyboltO(), 4).shuffleGrouping("kafkaspout");
		
     	Config config = new Config();
     	config.setNumWorkers(2);
     	config.setNumAckers(0);
     	try {
			StormSubmitter.submitTopology("storm-kafka-clients", config, builder.createTopology());
		} catch (Exception e) {
			e.printStackTrace();
		}
     	
 /*    	LocalCluster cu  = new LocalCluster();
     	cu.submitTopology("test", config, builder.createTopology());*/
	}
}
class  MyboltO extends  BaseRichBolt{
	private static final long serialVersionUID = 1L;
	OutputCollector collector = null;
	public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
		this.collector = collector;
	}
	public void execute(Tuple input) {
		//这里把消息大一出来,在对应的woker下面的日志可以找到打印的内容
		String out = input.getString(0);
		System.out.println(out);
		//collector.ack(input);
	}
	public void declareOutputFields(OutputFieldsDeclarer declarer) {
		
	}
	
	
}

pom.xml文件

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>hgs</groupId>
  <artifactId>core.sk</artifactId>
  <version>1.0.0-SNAPSHOT</version>
  <packaging>jar</packaging>
  <name>core.sk</name>
  <url>http://maven.apache.org</url>
  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
  </properties>
  <dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>
    
	<!--    
	<dependency>
    	<groupId>org.apache.storm</groupId>
    	<artifactId>storm-kafka</artifactId>
    	<version>1.1.3</version>
	</dependency> 
	-->
	
	<dependency>
   		<groupId>org.apache.storm</groupId>
   	 	<artifactId>storm-kafka-client</artifactId>
    	<version>1.1.3</version>
	</dependency>
	<dependency>
  		<groupId>org.apache.storm</groupId>
 		 <artifactId>storm-core</artifactId>
  		<version>1.1.3</version>
  		<scope>provided</scope>
	</dependency>
	<dependency>
    	<groupId>org.apache.kafka</groupId>
    	<artifactId>kafka_2.11</artifactId>
    	<version>1.0.0</version>
    <exclusions>
    		<exclusion>
          		<groupId>org.slf4j</groupId>
          		<artifactId>slf4j-log4j12</artifactId>
        	</exclusion>
        	<exclusion>
            	<groupId>org.apache.zookeeper</groupId>
            	<artifactId>zookeeper</artifactId>
       		</exclusion>
    	</exclusions>
	</dependency>
	
<!-- 	<dependency>
    	<groupId>org.apache.storm</groupId>
    	<artifactId>storm-kafka-monitor</artifactId>
    	<version>1.2.2</version>
	</dependency> -->
<!-- 	<dependency>
    	<groupId>org.apache.kafka</groupId>
    	<artifactId>kafka-clients</artifactId>
    	<version>0.8.2.1</version>
	</dependency> -->
	
	<dependency>
	    <groupId>org.clojure</groupId>
	    <artifactId>clojure</artifactId>
	    <version>1.7.0</version>
	</dependency>
	<!-- 尝试了很多次 都会有这个错误:
	java.lang.NullPointerException at org.apache.storm.kafka.monitor.KafkaOffsetLagUtil.getOffsetLags(KafkaOffsetLagUtil.java:272)
	最后修改为kafka相应的kafka-clients版本后问题得到解决,应该是该出的问题
	-->
	<dependency>
	    <groupId>org.apache.kafka</groupId>
	    <artifactId>kafka-clients</artifactId>
	    <version>1.0.0</version>
	</dependency>
	
 </dependencies>
  
  
  
  <build>
        <plugins>
            <plugin>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>2.2</version>
                <configuration>
                    <archive>
                        <manifest>
                            <!-- 我运行这个jar所运行的主类 -->
                            <mainClass>hgs.core.sk.StormKafkaMainTest</mainClass>
                        </manifest>
                    </archive>
                    <descriptorRefs>
                        <descriptorRef>
                            <!-- 必须是这样写 -->
                            jar-with-dependencies
                        </descriptorRef>
                    </descriptorRefs>
                </configuration>
                
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            
             <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                </configuration>
            </plugin>
        </plugins>
    </build>
</project>
//以下为lambda表达式,因为在上面用大了,所以在这儿记录一下,以免以后看不懂
import java.util.UUID;
import org.junit.jupiter.api.Test;
public class TEst {
	@Test
	public void sysConfig() {
		String[] ags = {"his is my first storm program so i hope it will success",
				"i love bascketball",
				"the day of my birthday i was alone"};
		String uuid = UUID.randomUUID().toString();
		String nexttuple= ags[new Random().nextInt(ags.length)];
		System.out.println(nexttuple);
	}
	
	@Test
	public void lambdaTest() {
		int b  = 100;
		//该出返回10*a的值、
		//"(a) -> 10*a" 相当于 new  testinter<T>();
		printPerson((a) -> 10*a) ;
	}
	
	void printPerson( testinter<Integer> t) {
		//穿过来的t需要一个参数a 即下面借口中定义的方法sysoutitems(int a )
		System.out.println(t.sysoutitems(100));
	};
	
}
//定义接口,在lambda表达式运用中,必须为借口,并且借口只能有一个方法
interface testinter<T>{
	T sysoutitems(int a );
	//void aAndb(int a, int b );
}

看完上述内容,你们掌握storm-kafka-client使用的示例分析的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI