这篇文章给大家分享的是有关python怎样验证中心极限定理的内容。小编觉得挺实用的,因此分享给大家做个参考。一起跟随小编过来看看吧。
python验证中心极限定理的方法:首先模拟随机掷色子1000次观察一下平均值;然后模拟抛十次,并画图看看他们的分布情况;最后模拟1000组,每组抛50次,并取每一组的平均值看分布情况。
python验证中心极限定理的方法:
中心极限定理:
从一个给定的服从任意分布的总体当中,每次抽n个样本,一共抽取m次。然后再对这m各组的值求平均值,各组的平均值会服从近似正态分布。
import numpy as np a = np.random.randint(1,7,1000)print(a)a.mean()
输出结果:
可以看到,掷1000次之后取平均值(注意:这个平均值每次策都有微小的不一样,因为是随机抽取的)接近于3.5(3.5=1/6*(1+2+3+4+5+6))。
然后,再次模拟抛10000次,取平均值
可以看到,结果越来越接近于3.5
sample = []for i in range(10): sample.append(a[int(np.random.random()*len(a))]) #从a里面随机抽plt.figure(figsize=(20,10),dpi=100)plt.bar(sample,range(len(sample)))plt.show()
可见分布不是非常的均匀。
sample_mean=[]sample_std=[]samples=[]for i in range(1000): sample=[] #每组一个列表 for j in range(60): sample.append(a[int(np.random.random()*len(a))])#模拟抛50次 sample = np.array(sample) #转化为array数组,便于处理 sample_mean.append(sample.mean()) sample_std.append(sample.std()) samples.append(sample)sample_mean_np = np.array(sample_mean)sample_std_np = np.array(sample_std)print(sample_mean_np)
plt.figure(figsize=(20,10),dpi=80)d =0.1 num_bins = (max(sample_mean_np)-min(sample_mean_np))//d plt.hist(sample_mean_np,num_bins) #绘制频率分布图
可以看到,每组的平均值是服从正态分布的。
感谢各位的阅读!关于python怎样验证中心极限定理就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到吧!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。