这篇文章主要介绍python里反向传播算法指的是什么,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
我们向相反的方向迈出了一小步——最大下降的方向,也就是将我们带到成本函数的局部最小值的方向。
图示演示:
反向传播算法中Sigmoid函数代码演示:
# 实现 sigmoid 函数 return 1 / (1 + np.exp(-x)) def sigmoid_derivative(x): # sigmoid 导数的计算 return sigmoid(x)*(1-sigmoid(x))
反向传播算法中ReLU 函数导数函数代码演示:
def relu_derivative(x): # ReLU 函数的导数 d = np.array(x, copy=True) # 用于保存梯度的张量 d[x < 0] = 0 # 元素为负的导数为 0 d[x >= 0] = 1 # 元素为正的导数为 1 return d
以上是python里反向传播算法指的是什么的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。