温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python3爬虫lock怎么有序的处理多线程

发布时间:2020-11-25 09:30:34 来源:亿速云 阅读:190 作者:小新 栏目:编程语言

这篇文章给大家分享的是有关python3爬虫lock怎么有序的处理多线程的内容。小编觉得挺实用的,因此分享给大家做个参考。一起跟随小编过来看看吧。

第一个线程处理好了,结果传递给第二个线程,那么需要“锁住“第一个线程。同时需要共享的内存shared memory。

如果不加任何lock:

# 不加任何处理,同时运行两个线程
import threading
def job1():
    global A
    for i in range(10):
        A += 1
        print("Job1 : ", A)
    
def job2():
    global A
    for i in range(10):
        A += 10
        print("Job2 : ", A)
        
A = 0 # global variable
t1 = threading.Thread(target=job1)
t2 = threading.Thread(target=job2)
t1.start()
t2.start()
t1.join()
t2.join()

运行结果

Job1 :  1
Job1 :  2
Job1 :  3
Job2 :  13Job1 :
Job2 :  24
Job2 :  34
Job2 :  44
Job2 :  54
Job2 :  64
Job2 :  74
Job2 :  84
Job2 :  94
Job2 :  104
 14
Job1 :  105
Job1 :  106
Job1 :  107
Job1 :  108
Job1 :  109
Job1 :  110

这两个线程会同时运行,且打印还比较乱。如果我想先结束job1,再进行job2,那么使用lock——定义一个全局变量lock,同时在每个job中传入lock。从而两者运行就不会相互影响。

 

加上lock

def job1():
    global A, lock
    # 传入全局变量lock,同时通过acquire上锁,通过release解锁。
    lock.acquire()
    for i in range(10):
        A += 1
        print("Job1 : ", A)
    lock.release()
    
def job2():
    global A, lock
    lock.acquire()
    for i in range(10):
        A += 10
        print("Job2 : ", A)
    lock.release()
        
lock = threading.Lock()
A = 0 # global variable
t1 = threading.Thread(target=job1)
t2 = threading.Thread(target=job2)
t1.start()
t2.start()
t1.join()
t2.join()

运行结果

Job1 :  1
Job1 :  2
Job1 :  3
Job1 :  4
Job1 :  5
Job1 :  6
Job1 :  7
Job1 :  8
Job1 :  9
Job1 :  10
Job2 :  20
Job2 :  30
Job2 :  40
Job2 :  50
Job2 :  60
Job2 :  70
Job2 :  80
Job2 :  90
Job2 :  100
Job2 :  110

感谢各位的阅读!关于python3爬虫lock怎么有序的处理多线程就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到吧!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI