温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

stream如何正确的在java8中使用

发布时间:2020-12-11 14:32:09 来源:亿速云 阅读:233 作者:Leah 栏目:开发技术

这期内容当中小编将会给大家带来有关stream如何正确的在java8中使用,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。

首先,我们一起看看stream的继承关系:

stream如何正确的在java8中使用

Stream、IntStream、LongStream、DoubleStream的父接口都是BaseStream。BaseStream的四个子接口方法都差不多,只是IntStream、LongStream、DoubleStream直接存储基本类型,可以避免自动装/拆箱,效率会更高一些。但是,我们实际上使用Stream更多一些。

我们再看看stream的工作流程图:

stream如何正确的在java8中使用

为什么要学stream的链式编程方式

业务需求1:指定一个字符串数组,找出里面相同的元素,并且统计重复的次数。

我们以前大概是这样做的:

public class CountTest {

 @Test
 public void testCount1() {
 List<String> list = Lists.newArrayList("a", "b", "ab", "abc", "a", "ab", "a", "abcd", "bd", "abc");

 Map<String, Long> countMap = new HashMap<>();
 for (String data : list) {
  Long aLong = countMap.get(data);
  if (Objects.isNull(aLong)) {
  countMap.put(data, 1L);
  } else {
  countMap.put(data, ++aLong);
  }
 }

 countMap.forEach((key, value) -> System.out.println("key:" + key + " value:" + value));
 }
}

执行结果:

key:a value:3
key:ab value:2
key:b value:1
key:bd value:1
key:abc value:2
key:abcd value:1

我们再看看如果用java8的stream可以怎么做:

public class CountTest {

 @Test
 public void testCount2() {
 List<String> list = Lists.newArrayList("a", "b", "ab", "abc", "a", "ab", "a", "abcd", "bd", "abc");
 Map<String, Long> countMap =  list.stream().collect(Collectors.groupingBy(Function.identity(), Collectors.counting()));
 countMap.forEach((key, value) ->  System.out.println("key:" + key + " value:" + value));
 }
}

执行结果:

key:a value:3
key:ab value:2
key:b value:1
key:bd value:1
key:abc value:2
key:abcd value:1

我们可以看到testCount1和testCount2执行结果相同,仅仅一行代码:

Map<String, Long> countMap = list.stream().collect(Collectors.groupingBy(Function.identity(), Collectors.counting()));

就可以实现上面testCount1中多行代码的逻辑。

业务需求2:从一个指定的字符串数组中,查找指定的字符串是否存在

我们以前大概是这样做的:

public class FindTest {

 @Test
 public void testFind1() {
 String findStr = "bd";
 List<String> list = Lists.newArrayList("a", "b", "ab", "abc", "a", "ab", "a", "abcd", "bd", "abc");
 boolean match = false;
 for (String data : list) {
  if (data.equals(findStr)) {
  match = true;
  break;
  }
 }
 //结果:match:true
 System.out.println("match:" + match);
 }
}

我们再看看如果用java8的stream可以怎么做:

public class MatchTest {

 @Test
 public void testFind2() {
 String findStr = "bd";
 List<String> list = Lists.newArrayList("a", "b", "ab", "abc", "a", "ab", "a", "abcd", "bd", "abc");
 boolean match = list.stream().anyMatch(x -> x.equals(findStr));
 //结果:match:true
 System.out.println("match:" + match);
 }
}

我们可以看到调用testFind1和testFind2方法执行结果也是一样的。但是,用java8 stream的语法,又只用一行代码就完成功能了,真棒。

java8 stream超详细用法指南

stream的操作符大体上分为两种:中间操作符和终止操作符

中间操作:

1.filter(T-> boolean)

过滤数据,保留 boolean 为 true 的元素,返回一个集合

public class FilterTest {
 @Test
 public void testFilter() {
 List<Integer> list = Lists.newArrayList(20, 23, 25, 28, 30, 33, 37, 40);
 //从指定数据集合中过滤出大于等于30的数据集合
 List<Integer> collect = list.stream().filter(x -> x >= 30).collect(Collectors.toList());
 //结果:[33, 37, 40]
 System.out.println(collect);
 }
}

collect(Collectors.toList())可以把流转换为 List 类型,collect实际上是一个终止操作。

2.map(T -> R)

转换操作符,可以做数据转换,比如:把字符串转换成int、long、double,或者把一个实体转换成另外一个实体。包含:map,mapToInt、mapToLong、mapToDouble

public class MapTest {


 @Test
 public void testMap() {
 List<String> list = Lists.newArrayList("1", "2", "3", "4", "5", "6");
 List<Long> collect1 = list.stream().map(x -> Long.parseLong(x)).collect(Collectors.toList());
 //结果:[1, 2, 3, 4, 5, 6]
 System.out.println(collect1);

 //结果:111111
 list.stream().mapToInt(x -> x.length()).forEach(System.out::print);
 System.out.println("");

 //结果:111111
 list.stream().mapToLong(x -> x.length()).forEach(System.out::print);
 System.out.println("");

 //结果:1.01.01.01.01.01.0
 list.stream().mapToDouble(x -> x.length()).forEach(System.out::print);
 }
}

3.flatMap(T -> Stream)

将流中的每一个元素 T 映射为一个流,再把每一个流连接成为一个流

public class FlatMapTest {

 @Test
 public void testFlatMap() {
 List<List<String>> list = new ArrayList<List<String>>(){{
  add(Lists.newArrayList("a","b","c"));
  add(Lists.newArrayList("d","e","f"));
  add(Lists.newArrayList("j","k","y"));
 }};
 //结果:[[a, b, c], [d, e, f], [j, k, y]]
 System.out.println(list);
 List<String> collect = list.stream().flatMap(List::stream).collect(Collectors.toList());
 //结果:[a, b, c, d, e, f, j, k, y]
 System.out.println(collect);
 }
}

我们可以看到flatMap可以轻松把字符串的二维数据变成一位数组。

4.distinct

去重,类似于msql中的distinct的作用,底层使用了equals方法做比较。

public class DistinctTest {

 @Test
 public void testDistinct() {
 List<String> list = Lists.newArrayList("a", "b", "ab", "abc", "a", "ab", "a", "abcd", "bd", "abc");
 List<String> collect = list.stream().distinct().collect(Collectors.toList());
 //结果:[a, b, ab, abc, abcd, bd]
 System.out.println(collect);
 }
}

其实,去重还有另外一种办法,可以用Collectors.toSet(),后面会讲到。

5.sorted

对元素进行排序,前提是实现Comparable接口,当然也可以自定义比较器。

public class SortTest {

 @Test
 public void testSort() {
 List<Integer> list = Lists.newArrayList(5, 3, 7, 1, 4, 6);
 List<Integer> collect = list.stream().sorted((a, b) -> a.compareTo(b)).collect(Collectors.toList());
 //结果:[1, 3, 4, 5, 6, 7]
 System.out.println(collect);
 }
}

6.limit

限流操作,有点类似于mysql中的limit功能,比如:有10个元素,只取前面3个元素

public class LimitTest {

 @Test
 public void testLimit() {
 List<String> list = Lists.newArrayList("a", "b", "ab", "abc", "a", "ab", "a", "abcd", "bd", "abc");
 List<String> collect = list.stream().limit(3).collect(Collectors.toList());
 //结果:[a, b, ab]
 System.out.println(collect);
 }
}

7.skip

跳过操作,比如:有个10个元素,从第5个元素开始去后面的元素

public class SkipTest {

 @Test
 public void testSkip() {
 List<String> list = Lists.newArrayList("a", "b", "ab", "abc", "a", "ab", "a", "abcd", "bd", "abc");
 List<String> collect = list.stream().skip(5).collect(Collectors.toList());
 //结果:[ab, a, abcd, bd, abc]
 System.out.println(collect);
 }
}

8.peek

挑出操作,

public class PeekTest {
 @Test
 public void testPeek() {
 List<String> list = Lists.newArrayList("a", "b", "ab", "abc", "a", "ab", "a", "abcd", "bd", "abc");
 //结果:abababcaabaabcdbdabc
 list.stream().peek(x -> x.toUpperCase()).forEach(System.out::print);
 }
}

眼尖的朋友会发现,进行x.toUpperCase()转换为大写功能,但是实际上没有生效。把peek改成map方法试试:

public class PeekTest {
 @Test
 public void testPeek() {
 List<String> list = Lists.newArrayList("a", "b", "ab", "abc", "a", "ab", "a", "abcd", "bd", "abc");
 //结果:ABABABCAABAABCDBDABC
 list.stream().map(x -> x.toUpperCase()).forEach(System.out::print);
 }
}

我们可以看到,用map操作转换成大写功能生效了,但是用peek操作却没有生效。peek只是对Stream中的元素进行某些操作,但是操作之后的数据并不返回到Stream中,所以Stream中的元素还是原来的元素。

终止操作:

1.forEach

遍历操作,包含:forEach 和 forEachOrdered

forEach:支持并行处理

forEachOrdered:是按顺序处理的,遍历速度较慢

public class ForEachTest {

 @Test
 public void testForEach() {
 List<String> list = Lists.newArrayList("a", "b", "ab");
 //结果:a b ab
 list.stream().forEach(x-> System.out.print(x+' '));
 System.out.println("");

 //可以简化
 //结果:a b ab
 list.forEach(x-> System.out.print(x+' '));
 System.out.println("");

 //结果:a b ab
 list.stream().forEachOrdered(x-> System.out.print(x+' '));
 }
}

2.collect

收集操作,将所有的元素收集起来,Collectors 提供了非常多收集器。包含:toMap、toSet、toList、joining,groupingBy,maxBy,minBy等操作。

toMap:将数据流转换为map,里面包含的元素是用key/value的形式的

toSet:将数据流转换为set,里面包含的元素不可重复

toList:将数据流转出为list,里面包含的元素是有序的

joining:拼接字符串

groupingBy:分组,可以将list转换map

couting:统计元素数量

maxBy:获取最大元素

minBy:获取最小元素

summarizingInt: 汇总int类型的元素,返回IntSummaryStatistics,再调用具体的方法对元素进行统计:getCount(统计数量),getSum(求和),getMin(获取最小值),getMax(获取最大值),getAverage(获取平均值)

summarizingLong:汇总long类型的元素,用法同summarizingInt

summarizingDouble:汇总double类型的元素,用法同summarizingInt

averagingInt:获取int类型的元素的平均值,返回一个double类型的数据

averagingLong:获取long类型的元素的平均值,用法同averagingInt

averagingDouble:获取double类型的元素的平均值,用法同averagingInt

mapping:获取映射,可以将原始元素的一部分内容作为一个新元素返回

public class CollectTest {

 @Data
 @AllArgsConstructor
 class User {
  private String name;
  private Integer age;
 }


 @Test
 public void testCollect() {
  List<String> list0 = Lists.newArrayList("a", "b", "ab");
  Map<String, String> collect0 = list0.stream().collect(Collectors.toMap(String::new, Function.identity()));
  //结果:{ab=ab, a=a, b=b}
  System.out.println(collect0);

  List<String> list = Lists.newArrayList("a", "b", "ab", "a", "b", "ab");
  List<String> collect1 = list.stream().collect(Collectors.toList());
  //结果:[a, b, ab, a, b, ab]
  System.out.println(collect1);

  //结果:[a, ab, b]
  Set<String> collect2 = list.stream().collect(Collectors.toSet());
  System.out.println(collect2);

  String collect3 = list.stream().collect(Collectors.joining(","));
  //结果:a,b,ab,a,b,ab
  System.out.println(collect3);

  Map<String, List<String>> collect4 = list.stream().collect(Collectors.groupingBy(Function.identity()));
  //结果:{ab=[ab, ab], a=[a, a], b=[b, b]}
  System.out.println(collect4);

  Long collect = list.stream().collect(Collectors.counting());
  //结果:6
  System.out.println(collect);

  String collect5 = list.stream().collect(Collectors.maxBy((a, b) -> a.compareTo(b))).orElse(null);
  //结果:b
  System.out.println(collect5);

  String collect6 = list.stream().collect(Collectors.minBy((a, b) -> a.compareTo(b))).orElse(null);
  //结果:a
  System.out.println(collect6);

  List<String> list2 = Lists.newArrayList("2", "3", "5");
  IntSummaryStatistics summaryStatistics = list2.stream().collect(Collectors.summarizingInt(x -> Integer.parseInt(x)));
  long sum = summaryStatistics.getSum();
  //结果:10
  System.out.println(sum);

  Double collect7 = list2.stream().collect(Collectors.averagingInt(x -> Integer.parseInt(x)));
  //结果:3.3333333333333335
  System.out.println(collect7);

  List<User> userList = new ArrayList<User>() {{
   add(new User("jack",23));
   add(new User("james",30));
   add(new User("curry",28));
  }};
  List<String> collect8 = userList.stream().collect(Collectors.mapping(User::getName, Collectors.toList()));
  //[jack, james, curry]
  System.out.println(collect8);
 }
}

3.find

查找操作,包含:findFirst、findAny

findFirst:找到第一个,返回的类型为Optional

findAny:使用 stream() 时找到的是第一个元素,使用 parallelStream() 并行时找到的是其中一个元素,返回的类型为Optional

public class FindOpTest {

 @Test
 public void testFindOp() {
  List<String> list = Lists.newArrayList("a", "b", "ab", "abc", "bc", "ab");
  //查找第一匹配的元素
  String data1 = list.stream().findFirst().orElse(null);
  //结果: a
  System.out.println(data1);

  String data2 = list.stream().findAny().orElse(null);
  //结果: a
  System.out.println(data2);
 }
}

4.match

匹配操作,包含:allMatch、anyMatch、noneMatch

allMatch:所有元素都满足条件,返回boolean类型

anyMatch:任意一个元素满足条件,返回boolean类型

noneMatch:所有元素都不满足条件,返回boolean类型

public class MatchTest {

 @Test
 public void testMatch() {
  List<Integer> list = Lists.newArrayList(2, 3, 5, 7);
  boolean allMatch = list.stream().allMatch(x -> x > 1);
  //结果:true
  System.out.println(allMatch);

  boolean allMatch3 = list.stream().allMatch(x -> x > 2);
  //结果:false
  System.out.println(allMatch3);

  boolean anyMatch = list.stream().anyMatch(x -> x > 2);
  //结果:true
  System.out.println(anyMatch);

  boolean noneMatch2 = list.stream().noneMatch(x -> x > 5);
  //结果:false
  System.out.println(noneMatch2);

  boolean noneMatch3 = list.stream().noneMatch(x -> x > 7);
  //结果:true
  System.out.println(noneMatch3);
 }
}

5.count

统计操作,效果跟调用集合的size()方法类似

public class CountOpTest {

 @Test
 public void testCountOp() {
  List<String> list = Lists.newArrayList("a", "b", "ab");
  long count = list.stream().count();
  //结果:3
  System.out.println(count);
 }
}

6.min、max

min:获取最小值,返回Optional类型的数据

max:获取最大值,返回Optional类型的数据

public class MaxMinTest {

 @Test
 public void testMaxMin() {
  List<Integer> list = Lists.newArrayList(2, 3, 5, 7);
  Optional<Integer> max = list.stream().max((a, b) -> a.compareTo(b));
  //结果:7
  System.out.println(max.get());

  Optional<Integer> min = list.stream().min((a, b) -> a.compareTo(b));
  //结果:2
  System.out.println(min.get());
 }
}

7.reduce

规约操作,将整个数据流的值规约为一个值,count、min、max底层就是使用reduce。

reduce 操作可以实现从Stream中生成一个值,其生成的值不是随意的,而是根据指定的计算模型。

public class ReduceTest {

 @Test
 public void testReduce() {
  List<Integer> list = Lists.newArrayList(2, 3, 5, 7);
  Integer sum1 = list.stream().reduce(0, Integer::sum);
  //结果:17
  System.out.println(sum1);

  Optional<Integer> reduce = list.stream().reduce((a, b) -> a + b);
  //结果:17
  System.out.println(reduce.get());

  Integer max = list.stream().reduce(0, Integer::max);
  //结果:7
  System.out.println(max);

  Integer min = list.stream().reduce(0, Integer::min);
  //结果:0
  System.out.println(min);


  Optional<Integer> reduce1 = list.stream().reduce((a, b) -> a > b ? b : a);
  //2
  System.out.println(reduce1.get());
 }
}

8.toArray

数组操作,将数据流的元素转换成数组。

public class ArrayTest {

 @Test
 public void testArray() {
  List<String> list = Lists.newArrayList("a", "b", "ab");
  String[] strings = list.stream().toArray(String[]::new);
  //结果:a b ab
  for (int i = 0; i < strings.length; i++) {
   System.out.print(strings[i]+" ");
  }
 }
}

stream和parallelStream的区别

stream:是单管道,称其为流,其主要用于集合的逻辑处理。

parallelStream:是多管道,提供了流的并行处理,它是Stream的另一重要特性,其底层使用Fork/Join框架实现

public class StreamTest {

 @Test
 public void testStream() {
  List<Integer> list = Lists.newArrayList(1,2, 3,4, 5,6, 7);
  //结果:1234567
  list.stream().forEach(System.out::print);
 }
}
public class ParallelStreamTest {
 @Test
 public void testParallelStream() {
  List<Integer> list = Lists.newArrayList(1,2, 3,4, 5,6, 7);
  //结果:5726134
  list.parallelStream().forEach(System.out::print);
 }
}

我们可以看到直接使用parallelStream的forEach遍历数据,是没有顺序的。

如果要让parallelStream遍历时有顺序怎么办呢?

public class ParallelStreamTest {

 @Test
 public void testParallelStream() {
  List<Integer> list = Lists.newArrayList(1,2, 3,4, 5,6, 7);
  //结果:1234567
  list.parallelStream().forEachOrdered(System.out::print);
 }
}

parallelStream的工作原理:

stream如何正确的在java8中使用

实际工作中的案例

1.从两个集合中找相同的元素。一般用于批量数据导入的场景,先查询出数据,再批量新增或修改。

public class WorkTest {

 @Test
 public void testWork1() {
  List<String> list1 = Lists.newArrayList("a", "b", "ab");
  List<String> list2 = Lists.newArrayList("a", "c", "ab");
  List<String> collect = list1.stream()
    .filter(x -> list2.stream().anyMatch(e -> e.equals(x)))
    .collect(Collectors.toList());
  //结果:[a, ab]
  System.out.println(collect);

 }
}

2.有两个集合a和b,过滤出集合a中有,但是集合b中没有的元素。这种情况可以使用在假如指定一个id集合,根据id集合从数据库中查询出数据集合,再根据id集合过滤出数据集合中不存在的id,这些id就是需要新增的。

@Test
public void testWork2() {
 List<String> list1 = Lists.newArrayList("a", "b", "ab");
 List<String> list2 = Lists.newArrayList("a", "c", "ab");
 List<String> collect = list1.stream()
  .filter(x -> list2.stream().noneMatch(e -> e.equals(x)))
  .collect(Collectors.toList());
 //结果:[b]
 System.out.println(collect);
}

3.根据条件过滤数据,并且去重做数据转换

 @AllArgsConstructor
 @Data
 class User {
  private String name;
  private Integer age;
 }

 @Test
 public void testWork3() {
  List<User> userList = new ArrayList<User>() {{
   add(new User("jack",23));
   add(new User("james",30));
   add(new User("curry",28));
   add(new User("tom",27));
   add(new User("sue",29));
  }};

  List<String> collect = userList.stream()
    .filter(x -> x.getAge() > 27)
    .sorted((a, b) -> a.getAge().compareTo(b.getAge()))
    .limit(2)
    .map(User::getName)
    .collect(Collectors.toList());
  //结果:[curry, sue]
  System.out.println(collect);
 }

4.统计指定集合中,姓名相同的人中年龄最小的年龄

@Test
public void testWork4() {
 List<User> userList = new ArrayList<User>() {{
  add(new User("tom", 23));
  add(new User("james", 30));
  add(new User("james", 28));
  add(new User("tom", 27));
  add(new User("sue", 29));
 }};

 userList.stream().collect(Collectors.groupingBy(User::getName))
   .forEach((name, list) -> {
    User user = list.stream().sorted((a, b) -> a.getAge().compareTo(b.getAge())).findFirst().orElse(null);
    //结果:name:sue,age:29
    //  name:tom,age:23
    //  name:james,age:28
    System.out.println("name:" + name + ",age:" + user.getAge());
   });
}

上述就是小编为大家分享的stream如何正确的在java8中使用了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI