本篇文章为大家展示了list数据怎么利用pandas拆分成行或列,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
import numpy as np
import pandas as pd
data = [{'Name': '小明', 'Chinese': [70, 80], 'Math': [90, 80]},
{'Name': '小红', 'Chinese': [70, 80, 90], 'Math': [90, 80, 70]}]
data = pd.DataFrame(data)
data
def split_row(data, column):
'''拆分成行
:param data: 原始数据
:param column: 拆分的列名
:type data: pandas.core.frame.DataFrame
:type column: str
'''
row_len = list(map(len, data[column].values))
rows = []
for i in data.columns:
if i == column:
row = np.concatenate(data[i].values)
else:
row = np.repeat(data[i].values, row_len)
rows.append(row)
return pd.DataFrame(np.dstack(tuple(rows))[0], columns=data.columns)
split_row(data, column='Chinese')
from copy import deepcopy
def split_col(data, column):
'''拆分成列
:param data: 原始数据
:param column: 拆分的列名
:type data: pandas.core.frame.DataFrame
:type column: str
'''
data = deepcopy(data)
max_len = max(list(map(len, data[column].values))) # 最大长度
new_col = data[column].apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan
new_col = np.array(new_col.tolist()).T # 转置
for i, j in enumerate(new_col):
data[column + str(i)] = j
return data
split_col(data, column='Chinese')
1. 批量处理+不要原列
def split_col(data, columns):
'''拆分成列
:param data: 原始数据
:param columns: 拆分的列名
:type data: pandas.core.frame.DataFrame
:type columns: list
'''
for c in columns:
new_col = data.pop(c)
max_len = max(list(map(len, new_col.values))) # 最大长度
new_col = new_col.apply(lambda x: x + [None]*(max_len - len(x))) # 补空值,None可换成np.nan
new_col = np.array(new_col.tolist()).T # 转置
for i, j in enumerate(new_col):
data[c + str(i)] = j
split_col(data, columns=['Chinese','Math'])
data
2. 带int和list数据
转成这样:
import numpy as np
import pandas as pd
data = [{'Name': '小爱', 'Chinese': 70, 'Math': 90},
{'Name': '小明', 'Chinese': [70, 80], 'Math': [90, 80]},
{'Name': '小红', 'Chinese': [70, 80, 90], 'Math': [90, 80, 70]}]
data = pd.DataFrame(data)
def split_col(data, columns):
'''拆分成列
:param data: 原始数据
:param columns: 拆分的列名
:type data: pandas.core.frame.DataFrame
:type columns: list
'''
for c in columns:
new_col = data.pop(c)
max_len = max(list(map(lambda x:len(x) if isinstance(x, list) else 1, new_col.values))) # 最大长度
new_col = new_col.apply(lambda x: x+[None]*(max_len - len(x)) if isinstance(x, list) else [x]+[None]*(max_len - 1)) # 补空值,None可换成np.nan
new_col = np.array(new_col.tolist()).T # 转置
for i, j in enumerate(new_col):
data[c + str(i)] = j
split_col(data, columns=['Chinese','Math'])
data
上述内容就是list数据怎么利用pandas拆分成行或列,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。