温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python3下multiprocessing、threading和gevent性能对比以及进程池、线程池和协程池性能对比

发布时间:2021-10-14 14:01:10 来源:亿速云 阅读:179 作者:柒染 栏目:编程语言

python3下multiprocessing、threading和gevent性能对比以及进程池、线程池和协程池性能对比,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

        目前计算机程序一般会遇到两类I/O:硬盘I/O和网络I/O。我就针对网络I/O的场景分析下python3下进程、线程、协程效率的对比。进程采用multiprocessing.Pool进程池,线程是自己封装的进程池,协程采用gevent的库。用python3自带的urlllib.request和开源的requests做对比。代码如下:

import urllib.request
import requests
import time
import multiprocessing
import threading
import queue

def startTimer():
    return time.time()

def ticT(startTime):
    useTime = time.time() - startTime
    return round(useTime, 3)

#def tic(startTime, name):
#    useTime = time.time() - startTime
#    print('[%s] use time: %1.3f' % (name, useTime))

def download_urllib(url):
    req = urllib.request.Request(url,
            headers={'user-agent': 'Mozilla/5.0'})
    res = urllib.request.urlopen(req)
    data = res.read()
    try:
        data = data.decode('gbk')
    except UnicodeDecodeError:
        data = data.decode('utf8', 'ignore')
    return res.status, data

def download_requests(url):
    req = requests.get(url,
            headers={'user-agent': 'Mozilla/5.0'})
    return req.status_code, req.text

class threadPoolManager:
	def __init__(self,urls, workNum=10000,threadNum=20):
		self.workQueue=queue.Queue()
		self.threadPool=[]
		self.__initWorkQueue(urls)
		self.__initThreadPool(threadNum)

	def __initWorkQueue(self,urls):
		for i in urls:
			self.workQueue.put((download_requests,i))

	def __initThreadPool(self,threadNum):
		for i in range(threadNum):
			self.threadPool.append(work(self.workQueue))

	def waitAllComplete(self):
		for i in self.threadPool:
			if i.isAlive():
				i.join()

class work(threading.Thread):
	def __init__(self,workQueue):
		threading.Thread.__init__(self)
		self.workQueue=workQueue
		self.start()
	def run(self):
		while True:
			if self.workQueue.qsize():
				do,args=self.workQueue.get(block=False)
				do(args)
				self.workQueue.task_done()
			else:
				break

urls = ['http://www.ustchacker.com'] * 10
urllibL = []
requestsL = []
multiPool = []
threadPool = []
N = 20
PoolNum = 100

for i in range(N):
    print('start %d try' % i)
    urllibT = startTimer()
    jobs = [download_urllib(url) for url in urls]
    #for status, data in jobs:
    #    print(status, data[:10])
    #tic(urllibT, 'urllib.request')
    urllibL.append(ticT(urllibT))
    print('1')
    
    requestsT = startTimer()
    jobs = [download_requests(url) for url in urls]
    #for status, data in jobs:
    #    print(status, data[:10])
    #tic(requestsT, 'requests')
    requestsL.append(ticT(requestsT))
    print('2')
    
    requestsT = startTimer()
    pool = multiprocessing.Pool(PoolNum)
    data = pool.map(download_requests, urls)
    pool.close()
    pool.join()
    multiPool.append(ticT(requestsT))
    print('3')

    requestsT = startTimer()
    pool = threadPoolManager(urls, threadNum=PoolNum)
    pool.waitAllComplete()
    threadPool.append(ticT(requestsT))
    print('4')

import matplotlib.pyplot as plt
x = list(range(1, N+1))
plt.plot(x, urllibL, label='urllib')
plt.plot(x, requestsL, label='requests')
plt.plot(x, multiPool, label='requests MultiPool')
plt.plot(x, threadPool, label='requests threadPool')
plt.xlabel('test number')
plt.ylabel('time(s)')
plt.legend()
plt.show()

运行结果如下:

python3下multiprocessing、threading和gevent性能对比以及进程池、线程池和协程池性能对比

        从上图可以看出,python3自带的urllib.request效率还是不如开源的requests,multiprocessing进程池效率明显提升,但还低于自己封装的线程池,有一部分原因是创建、调度进程的开销比创建线程高(测试程序中我把创建的代价也包括在里面)。

        下面是gevent的测试代码:

import urllib.request
import requests
import time
import gevent.pool
import gevent.monkey

gevent.monkey.patch_all()

def startTimer():
    return time.time()

def ticT(startTime):
    useTime = time.time() - startTime
    return round(useTime, 3)

#def tic(startTime, name):
#    useTime = time.time() - startTime
#    print('[%s] use time: %1.3f' % (name, useTime))

def download_urllib(url):
    req = urllib.request.Request(url,
            headers={'user-agent': 'Mozilla/5.0'})
    res = urllib.request.urlopen(req)
    data = res.read()
    try:
        data = data.decode('gbk')
    except UnicodeDecodeError:
        data = data.decode('utf8', 'ignore')
    return res.status, data

def download_requests(url):
    req = requests.get(url,
            headers={'user-agent': 'Mozilla/5.0'})
    return req.status_code, req.text

urls = ['http://www.ustchacker.com'] * 10
urllibL = []
requestsL = []
reqPool = []
reqSpawn = []
N = 20
PoolNum = 100

for i in range(N):
    print('start %d try' % i)
    urllibT = startTimer()
    jobs = [download_urllib(url) for url in urls]
    #for status, data in jobs:
    #    print(status, data[:10])
    #tic(urllibT, 'urllib.request')
    urllibL.append(ticT(urllibT))
    print('1')
    
    requestsT = startTimer()
    jobs = [download_requests(url) for url in urls]
    #for status, data in jobs:
    #    print(status, data[:10])
    #tic(requestsT, 'requests')
    requestsL.append(ticT(requestsT))
    print('2')
    
    requestsT = startTimer()
    pool = gevent.pool.Pool(PoolNum)
    data = pool.map(download_requests, urls)
    #for status, text in data:
    #    print(status, text[:10])
    #tic(requestsT, 'requests with gevent.pool')
    reqPool.append(ticT(requestsT))
    print('3')
    
    requestsT = startTimer()
    jobs = [gevent.spawn(download_requests, url) for url in urls]
    gevent.joinall(jobs)
    #for i in jobs:
    #    print(i.value[0], i.value[1][:10])
    #tic(requestsT, 'requests with gevent.spawn')
    reqSpawn.append(ticT(requestsT))
    print('4')
    
import matplotlib.pyplot as plt
x = list(range(1, N+1))
plt.plot(x, urllibL, label='urllib')
plt.plot(x, requestsL, label='requests')
plt.plot(x, reqPool, label='requests geventPool')
plt.plot(x, reqSpawn, label='requests Spawn')
plt.xlabel('test number')
plt.ylabel('time(s)')
plt.legend()
plt.show()

运行结果如下:

python3下multiprocessing、threading和gevent性能对比以及进程池、线程池和协程池性能对比

        从上图可以看到,对于I/O密集型任务,gevent还是能对性能做很大提升的,由于协程的创建、调度开销都比线程小的多,所以可以看到不论使用gevent的Spawn模式还是Pool模式,性能差距不大。

        因为在gevent中需要使用monkey补丁,会提高gevent的性能,但会影响multiprocessing的运行,如果要同时使用,需要如下代码:

gevent.monkey.patch_all(thread=False, socket=False, select=False)

        可是这样就不能充分发挥gevent的优势,所以不能把multiprocessing Pool、threading Pool、gevent Pool在一个程序中对比。不过比较两图可以得出结论,线程池和gevent的性能最优的,其次是进程池。附带得出个结论,requests库比urllib.request库性能要好一些哈:-)        

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注亿速云行业资讯频道,感谢您对亿速云的支持。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI