温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何使用python登录带弱图片验证码的网站

发布时间:2021-03-17 14:10:19 来源:亿速云 阅读:162 作者:小新 栏目:开发技术

小编给大家分享一下如何使用python登录带弱图片验证码的网站,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

图片验证码

一般都通过加干扰线、粘连或扭曲等方式来增加强度。

如何使用python登录带弱图片验证码的网站

登陆

我们选择一个政务网站(图片验证码的强度较低)。

点击个人用户登录

访问网站首页以后我们发现需要先点击个人用户登陆,且元素没有name、id登标识不好获取,所以我们直接执行里面的onClick方法

如何使用python登录带弱图片验证码的网站

如何使用python登录带弱图片验证码的网站

# 新建selenium浏览器对象,后面是geckodriver.exe下载后本地路径
browser = webdriver.Firefox()

url = 'http://xxx.gov.cn/'

# 浏览器访问登录页面
browser.get(url)

# 等待3s用于加载脚本文件
browser.implicitly_wait(3)

# 点击个人登陆
browser.execute_script('showpersonlogin();')

获取图片验证码

我们可以通过save_screenshot截图,然后找到验证码元素,获取元素位置然后在截图的基础上裁剪出验证码。

# 找到图片验证码元素
img = browser.find_element_by_id('imgCode')

location = img.location

size = img.size

left = location['x']

top = location['y']

right = left + size['width']

bottom = top + size['height']

# 按照验证码的长宽,切割验证码
image_obj = loginPage.crop((left, top, right, bottom))

image_obj.save('code.png')

如何使用python登录带弱图片验证码的网站

如何使用python登录带弱图片验证码的网站

识别并登陆

由于该网站的验证码比较简单可以直接用pytesseract模块的image_to_string方法

orcCode = pytesseract.image_to_string('code.png')

# 输入用户名
username = browser.find_element_by_id('personaccount')
username.send_keys('账号')

# 输入密码
password = browser.find_element_by_id('personpassword')
password.send_keys('密码')

# 输入验证码
code = browser.find_element_by_id('captcha1')
code.send_keys(orcCode)

# 执行登录
browser.execute_script('personlogin();')


# 关闭浏览器
# browser.quit()

识别较复杂验证码算法

网上找的算法,先将图片转为灰度图,然后进行二值化处理(将图像上的像素点的灰度值设置为0或255。如灰度大于等于阈值的像素,用255表示。否则为0。),再去噪(8邻域降噪,判断8个邻域的黑色数量个数)。

ocrImage.py:

import pytesseract
from PIL import Image
from collections import defaultdict


# 获取图片中像素点数量最多的像素
def get_threshold(image):
  pixel_dict = defaultdict(int)

  # 像素及该像素出现次数的字典
  rows, cols = image.size
  for i in range(rows):
    for j in range(cols):
      pixel = image.getpixel((i, j))
      pixel_dict[pixel] += 1

  count_max = max(pixel_dict.values()) # 获取像素出现出多的次数
  pixel_dict_reverse = {v: k for k, v in pixel_dict.items()}
  threshold = pixel_dict_reverse[count_max] # 获取出现次数最多的像素点

  return threshold


# 按照阈值进行二值化处理
# threshold: 像素阈值
def get_bin_table(threshold):
  # 获取灰度转二值的映射table
  table = []
  for i in range(256):
    rate = 0.1 # 在threshold的适当范围内进行处理
    if threshold * (1 - rate) <= i <= threshold * (1 + rate):
      table.append(1)
    else:
      table.append(0)
  return table


# 去掉二值化处理后的图片中的噪声点
def cut_noise(image):
  rows, cols = image.size # 图片的宽度和高度
  change_pos = [] # 记录噪声点位置

  # 遍历图片中的每个点,除掉边缘
  for i in range(1, rows - 1):
    for j in range(1, cols - 1):
      # pixel_set用来记录该店附近的黑色像素的数量
      pixel_set = []
      # 取该点的邻域为以该点为中心的九宫格
      for m in range(i - 1, i + 2):
        for n in range(j - 1, j + 2):
          if image.getpixel((m, n)) != 1: # 1为白色,0位黑色
            pixel_set.append(image.getpixel((m, n)))

      # 如果该位置的九宫内的黑色数量小于等于4,则判断为噪声
      if len(pixel_set) <= 4:
        change_pos.append((i, j))

  # 对相应位置进行像素修改,将噪声处的像素置为1(白色)
  for pos in change_pos:
    image.putpixel(pos, 1)

  return image # 返回修改后的图片


# 识别图片中的数字加字母
# 传入参数为图片路径,返回结果为:识别结果
def ocr_img(img_path):
  image = Image.open(img_path) # 打开图片文件
  imgry = image.convert('L') # 转化为灰度图

  # 获取图片中的出现次数最多的像素,即为该图片的背景
  max_pixel = get_threshold(imgry)
  # 将图片进行二值化处理
  table = get_bin_table(threshold=max_pixel)
  out = imgry.point(table, '1')

  # 去掉图片中的噪声(孤立点)
  out = cut_noise(out)

  # 仅识别图片中的数字
  # text = pytesseract.image_to_string(out, config='digits')
  # 识别图片中的数字和字母
  text = pytesseract.image_to_string(out)
  # 去掉识别结果中的特殊字符
  exclude_char_list = ' .:\\|\'\"?![],()~@#$%^&*_+-={};<>/&yen;'
  text = ''.join([x for x in text if x not in exclude_char_list])

  return text

如何使用python登录带弱图片验证码的网站

ocrImage.ocr_img('data/0021.png')

如何使用python登录带弱图片验证码的网站

其他

针对不同的图片验证码用的方法不尽相同,cv2模块也提供了很多图片的处理方法可以用于识别图片验证码。

如使用cv2的腐蚀和碰撞方法就可以对图片进行简单的处理。

干扰条件较多、识别难度大的则需要依靠机器学习来完成。

以上是“如何使用python登录带弱图片验证码的网站”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI