温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》
  • 首页 > 
  • 教程 > 
  • 开发技术 > 
  • python中np.multiply()、np.dot()和星号(*)三种乘法运算的区别有哪些

python中np.multiply()、np.dot()和星号(*)三种乘法运算的区别有哪些

发布时间:2021-03-22 09:17:58 来源:亿速云 阅读:253 作者:小新 栏目:开发技术

这篇文章主要介绍python中np.multiply()、np.dot()和星号(*)三种乘法运算的区别有哪些,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

为了区分三种乘法运算的规则,具体分析如下:

import numpy as np

1. np.multiply()函数

函数作用

数组和矩阵对应位置相乘,输出与相乘数组/矩阵的大小一致

1.1数组场景

A = np.arange(1,5).reshape(2,2)
A

array([[1, 2],
       [3, 4]])

B = np.arange(0,4).reshape(2,2)
B

array([[0, 1],
       [2, 3]])

np.multiply(A,B)  #数组对应元素位置相乘

array([[ 0,  2],
       [ 6, 12]])

1.2 矩阵场景

np.multiply(np.mat(A),np.mat(B))  #矩阵对应元素位置相乘,利用np.mat()将数组转换为矩阵

matrix([[ 0,  2],
        [ 6, 12]])

np.sum(np.multiply(np.mat(A),np.mat(B))) #输出为标量

20

2. np.dot()函数

函数作用

对于秩为1的数组,执行对应位置相乘,然后再相加;

对于秩不为1的二维数组,执行矩阵乘法运算;超过二维的可以参考numpy库介绍。

2.1 数组场景

2.1.1 数组秩不为1的场景

A = np.arange(1,5).reshape(2,2)
A

array([[1, 2],
       [3, 4]])

B = np.arange(0,4).reshape(2,2)
B

array([[0, 1],
       [2, 3]])

np.dot(A,B) #对数组执行矩阵相乘运算

array([[ 4,  7],
       [ 8, 15]])

2.1.2 数组秩为1的场景

C = np.arange(1,4)
C

array([1, 2, 3])

D = np.arange(0,3)
D

array([0, 1, 2])

np.dot(C,D) #对应位置相乘,再求和

8

2.2 矩阵场景

np.dot(np.mat(A),np.mat(B)) #执行矩阵乘法运算

matrix([[ 4,  7],
        [ 8, 15]])

3. 星号(*)乘法运算

作用

对数组执行对应位置相乘

对矩阵执行矩阵乘法运算

3.1 数组场景

A = np.arange(1,5).reshape(2,2)
A

array([[1, 2],
       [3, 4]])

B = np.arange(0,4).reshape(2,2)
B

array([[0, 1],
       [2, 3]])

A*B #对应位置点乘

array([[ 0,  2],
       [ 6, 12]])

3.2矩阵场景

(np.mat(A))*(np.mat(B)) #执行矩阵运算

matrix([[ 4,  7],
        [ 8, 15]])

以上是“python中np.multiply()、np.dot()和星号(*)三种乘法运算的区别有哪些”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI