这篇文章主要介绍了numpy中怎么使用squeeze函数,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
reshape函数:改变数组的维数(注意不是shape大小)
>>> e= np.arange(10) >>> e array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> e.reshape(1,1,10) array([[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]]) >>> e.reshape(1,1,10) array([[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]]) >>> e.reshape(1,10,1) array([[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]]])
squeeze 函数:从数组的形状中删除单维度条目,即把shape中为1的维度去掉
用法:numpy.squeeze(a,axis = None)
1)a表示输入的数组;
2)axis用于指定需要删除的维度,但是指定的维度必须为单维度,否则将会报错;
3)axis的取值可为None 或 int 或 tuple of ints, 可选。若axis为空,则删除所有单维度的条目;
4)返回值:数组
5) 不会修改原数组;
>>> a = e.reshape(1,1,10) >>> a array([[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]]) >>> np.squeeze(a) array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
体现在画图时
>>> plt.plot(a) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "C:\Python27\lib\site-packages\matplotlib\pyplot.py", line 3240, in plot ret = ax.plot(*args, **kwargs) File "C:\Python27\lib\site-packages\matplotlib\__init__.py", line 1710, in inner return func(ax, *args, **kwargs) File "C:\Python27\lib\site-packages\matplotlib\axes\_axes.py", line 1437, in plot for line in self._get_lines(*args, **kwargs): File "C:\Python27\lib\site-packages\matplotlib\axes\_base.py", line 404, in _grab_next_args for seg in self._plot_args(this, kwargs): File "C:\Python27\lib\site-packages\matplotlib\axes\_base.py", line 384, in _plot_args x, y = self._xy_from_xy(x, y) File "C:\Python27\lib\site-packages\matplotlib\axes\_base.py", line 246, in _xy_from_xy "shapes {} and {}".format(x.shape, y.shape)) ValueError: x and y can be no greater than 2-D, but have shapes (1L,) and (1L, 1L, 10L) >>> plt.plot(np.squeeze(a)) [<matplotlib.lines.Line2D object at 0x00000000146CD940>] >>> plt.show()
>>> np.squeeze(a).shape (10L,)
通过np.squeeze()函数转换后,要显示的数组变成了秩为1的数组,即(10,)
感谢你能够认真阅读完这篇文章,希望小编分享的“numpy中怎么使用squeeze函数”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。