本篇文章给大家分享的是有关如何在PostgreSQL中利用ltree处理层次结构数据,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
Ltree是PostgreSQL模块。它实现了一种数据类型ltree,用于表示存储在分层树状结构中的数据的标签。提供了用于搜索标签树的广泛工具。
ltree实现了一个物化路径,对于INSERT / UPDATE / DELETE来说非常快,而对于SELECT操作则较快
通常,它比使用经常需要重新计算分支的递归CTE或递归函数要快
如内置的查询语法和专门用于查询和导航树的运算符
索引!!!
首先,您应该在数据库中启用扩展。您可以通过以下命令执行此操作:
CREATE EXTENSION ltree;
让我们创建表并向其中添加一些数据:
CREATE TABLE comments (user_id integer, description text, path ltree); INSERT INTO comments (user_id, description, path) VALUES ( 1, md5(random()::text), '0001'); INSERT INTO comments (user_id, description, path) VALUES ( 2, md5(random()::text), '0001.0001.0001'); INSERT INTO comments (user_id, description, path) VALUES ( 2, md5(random()::text), '0001.0001.0001.0001'); INSERT INTO comments (user_id, description, path) VALUES ( 1, md5(random()::text), '0001.0001.0001.0002'); INSERT INTO comments (user_id, description, path) VALUES ( 5, md5(random()::text), '0001.0001.0001.0003'); INSERT INTO comments (user_id, description, path) VALUES ( 6, md5(random()::text), '0001.0002'); INSERT INTO comments (user_id, description, path) VALUES ( 6, md5(random()::text), '0001.0002.0001'); INSERT INTO comments (user_id, description, path) VALUES ( 6, md5(random()::text), '0001.0003'); INSERT INTO comments (user_id, description, path) VALUES ( 8, md5(random()::text), '0001.0003.0001'); INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0002'); INSERT INTO comments (user_id, description, path) VALUES ( 11, md5(random()::text), '0001.0003.0002.0001'); INSERT INTO comments (user_id, description, path) VALUES ( 2, md5(random()::text), '0001.0003.0002.0002'); INSERT INTO comments (user_id, description, path) VALUES ( 5, md5(random()::text), '0001.0003.0002.0003'); INSERT INTO comments (user_id, description, path) VALUES ( 7, md5(random()::text), '0001.0003.0002.0002.0001'); INSERT INTO comments (user_id, description, path) VALUES ( 20, md5(random()::text), '0001.0003.0002.0002.0002'); INSERT INTO comments (user_id, description, path) VALUES ( 31, md5(random()::text), '0001.0003.0002.0002.0003'); INSERT INTO comments (user_id, description, path) VALUES ( 22, md5(random()::text), '0001.0003.0002.0002.0004'); INSERT INTO comments (user_id, description, path) VALUES ( 34, md5(random()::text), '0001.0003.0002.0002.0005'); INSERT INTO comments (user_id, description, path) VALUES ( 22, md5(random()::text), '0001.0003.0002.0002.0006');
另外,我们应该添加一些索引:
CREATE INDEX path_gist_comments_idx ON comments USING GIST(path); CREATE INDEX path_comments_idx ON comments USING btree(path);
正如您看到的那样,我建立comments表时带有path字段,该字段包含该表的tree全部路径。如您所见,对于树分隔符,我使用4个数字和点。
让我们在commenets表中找到path以‘0001.0003'的记录:
$ SELECT user_id, path FROM comments WHERE path <@ '0001.0003'; user_id | path ---------+-------------------------- 6 | 0001.0003 8 | 0001.0003.0001 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 5 | 0001.0003.0002.0003 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006 (12 rows)
让我们通过EXPLAIN命令检查这个SQL:
$ EXPLAIN ANALYZE SELECT user_id, path FROM comments WHERE path <@ '0001.0003'; QUERY PLAN ---------------------------------------------------------------------------------------------------- Seq Scan on comments (cost=0.00..1.24 rows=2 width=38) (actual time=0.013..0.017 rows=12 loops=1) Filter: (path <@ '0001.0003'::ltree) Rows Removed by Filter: 7 Total runtime: 0.038 ms (4 rows)
让我们禁用seq scan进行测试:
$ SET enable_seqscan=false; SET $ EXPLAIN ANALYZE SELECT user_id, path FROM comments WHERE path <@ '0001.0003'; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------- Index Scan using path_gist_comments_idx on comments (cost=0.00..8.29 rows=2 width=38) (actual time=0.023..0.034 rows=12 loops=1) Index Cond: (path <@ '0001.0003'::ltree) Total runtime: 0.076 ms (3 rows)
现在SQL慢了,但是能看到SQL是怎么使用index的。
第一个SQL语句使用了sequence scan,因为在表中没有太多的数据。
我们可以将select “path <@ ‘0001.0003'” 换种实现方法:
$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*'; user_id | path ---------+-------------------------- 6 | 0001.0003 8 | 0001.0003.0001 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 5 | 0001.0003.0002.0003 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006 (12 rows)
你不应该忘记数据的顺序,如下的例子:
$ INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0001.0001'); $ INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0001.0002'); $ INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0001.0003'); $ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*'; user_id | path ---------+-------------------------- 6 | 0001.0003 8 | 0001.0003.0001 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 5 | 0001.0003.0002.0003 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006 9 | 0001.0003.0001.0001 9 | 0001.0003.0001.0002 9 | 0001.0003.0001.0003 (15 rows)
现在进行排序:
$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*' ORDER by path; user_id | path ---------+-------------------------- 6 | 0001.0003 8 | 0001.0003.0001 9 | 0001.0003.0001.0001 9 | 0001.0003.0001.0002 9 | 0001.0003.0001.0003 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006 5 | 0001.0003.0002.0003 (15 rows)
可以在lquery的非星号标签的末尾添加几个修饰符,以使其比完全匹配更匹配:
“ @”-不区分大小写匹配,例如a @匹配A
“ *”-匹配任何带有该前缀的标签,例如foo *匹配foobar
“%”-匹配以下划线开头的单词
$ SELECT user_id, path FROM comments WHERE path ~ '0001.*{1,2}.0001|0002.*' ORDER by path; user_id | path ---------+-------------------------- 2 | 0001.0001.0001 2 | 0001.0001.0001.0001 1 | 0001.0001.0001.0002 5 | 0001.0001.0001.0003 6 | 0001.0002.0001 8 | 0001.0003.0001 9 | 0001.0003.0001.0001 9 | 0001.0003.0001.0002 9 | 0001.0003.0001.0003 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006 5 | 0001.0003.0002.0003 (19 rows)
我们来为parent ‘0001.0003'找到所有直接的childrens,见下:
$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*{1}' ORDER by path; user_id | path ---------+---------------- 8 | 0001.0003.0001 9 | 0001.0003.0002 (2 rows)
为parent ‘0001.0003'找到所有的childrens,见下:
$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*' ORDER by path; user_id | path ---------+-------------------------- 6 | 0001.0003 8 | 0001.0003.0001 9 | 0001.0003.0001.0001 9 | 0001.0003.0001.0002 9 | 0001.0003.0001.0003 9 | 0001.0003.0002 11 | 0001.0003.0002.0001 2 | 0001.0003.0002.0002 7 | 0001.0003.0002.0002.0001 20 | 0001.0003.0002.0002.0002 31 | 0001.0003.0002.0002.0003 22 | 0001.0003.0002.0002.0004 34 | 0001.0003.0002.0002.0005 22 | 0001.0003.0002.0002.0006 5 | 0001.0003.0002.0003 (15 rows)
为children ‘0001.0003.0002.0002.0005'找到parent:
$ SELECT user_id, path FROM comments WHERE path = subpath('0001.0003.0002.0002.0005', 0, -1) ORDER by path; user_id | path ---------+--------------------- 2 | 0001.0003.0002.0002 (1 row)
以上就是如何在PostgreSQL中利用ltree处理层次结构数据,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。