温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何在PostgreSQL中利用ltree处理层次结构数据

发布时间:2021-03-30 18:00:50 来源:亿速云 阅读:313 作者:Leah 栏目:开发技术

本篇文章给大家分享的是有关如何在PostgreSQL中利用ltree处理层次结构数据,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。

什么是ltree?

Ltree是PostgreSQL模块。它实现了一种数据类型ltree,用于表示存储在分层树状结构中的数据的标签。提供了用于搜索标签树的广泛工具。

为什么选择ltree?

  • ltree实现了一个物化路径,对于INSERT / UPDATE / DELETE来说非常快,而对于SELECT操作则较快

  • 通常,它比使用经常需要重新计算分支的递归CTE或递归函数要快

  • 如内置的查询语法和专门用于查询和导航树的运算符

  • 索引!!!

初始数据

首先,您应该在数据库中启用扩展。您可以通过以下命令执行此操作:

CREATE EXTENSION ltree;

让我们创建表并向其中添加一些数据:

CREATE TABLE comments (user_id integer, description text, path ltree);
INSERT INTO comments (user_id, description, path) VALUES ( 1, md5(random()::text), '0001');
INSERT INTO comments (user_id, description, path) VALUES ( 2, md5(random()::text), '0001.0001.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 2, md5(random()::text), '0001.0001.0001.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 1, md5(random()::text), '0001.0001.0001.0002');
INSERT INTO comments (user_id, description, path) VALUES ( 5, md5(random()::text), '0001.0001.0001.0003');
INSERT INTO comments (user_id, description, path) VALUES ( 6, md5(random()::text), '0001.0002');
INSERT INTO comments (user_id, description, path) VALUES ( 6, md5(random()::text), '0001.0002.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 6, md5(random()::text), '0001.0003');
INSERT INTO comments (user_id, description, path) VALUES ( 8, md5(random()::text), '0001.0003.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0002');
INSERT INTO comments (user_id, description, path) VALUES ( 11, md5(random()::text), '0001.0003.0002.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 2, md5(random()::text), '0001.0003.0002.0002');
INSERT INTO comments (user_id, description, path) VALUES ( 5, md5(random()::text), '0001.0003.0002.0003');
INSERT INTO comments (user_id, description, path) VALUES ( 7, md5(random()::text), '0001.0003.0002.0002.0001');
INSERT INTO comments (user_id, description, path) VALUES ( 20, md5(random()::text), '0001.0003.0002.0002.0002');
INSERT INTO comments (user_id, description, path) VALUES ( 31, md5(random()::text), '0001.0003.0002.0002.0003');
INSERT INTO comments (user_id, description, path) VALUES ( 22, md5(random()::text), '0001.0003.0002.0002.0004');
INSERT INTO comments (user_id, description, path) VALUES ( 34, md5(random()::text), '0001.0003.0002.0002.0005');
INSERT INTO comments (user_id, description, path) VALUES ( 22, md5(random()::text), '0001.0003.0002.0002.0006');

另外,我们应该添加一些索引:

CREATE INDEX path_gist_comments_idx ON comments USING GIST(path);
CREATE INDEX path_comments_idx ON comments USING btree(path);

正如您看到的那样,我建立comments表时带有path字段,该字段包含该表的tree全部路径。如您所见,对于树分隔符,我使用4个数字和点。

让我们在commenets表中找到path以‘0001.0003'的记录:

$ SELECT user_id, path FROM comments WHERE path <@ '0001.0003';
 user_id |   path
---------+--------------------------
  6 | 0001.0003
  8 | 0001.0003.0001
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  5 | 0001.0003.0002.0003
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
(12 rows)

让我们通过EXPLAIN命令检查这个SQL:

$ EXPLAIN ANALYZE SELECT user_id, path FROM comments WHERE path <@ '0001.0003';
            QUERY PLAN
----------------------------------------------------------------------------------------------------
 Seq Scan on comments (cost=0.00..1.24 rows=2 width=38) (actual time=0.013..0.017 rows=12 loops=1)
 Filter: (path <@ '0001.0003'::ltree)
 Rows Removed by Filter: 7
 Total runtime: 0.038 ms
(4 rows)

让我们禁用seq scan进行测试:

$ SET enable_seqscan=false;
SET
$ EXPLAIN ANALYZE SELECT user_id, path FROM comments WHERE path <@ '0001.0003';
               QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------
 Index Scan using path_gist_comments_idx on comments (cost=0.00..8.29 rows=2 width=38) (actual time=0.023..0.034 rows=12 loops=1)
 Index Cond: (path <@ '0001.0003'::ltree)
 Total runtime: 0.076 ms
(3 rows)

现在SQL慢了,但是能看到SQL是怎么使用index的。
第一个SQL语句使用了sequence scan,因为在表中没有太多的数据。

我们可以将select “path <@ ‘0001.0003'” 换种实现方法:

$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*';
user_id |   path
---------+--------------------------
  6 | 0001.0003
  8 | 0001.0003.0001
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  5 | 0001.0003.0002.0003
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
(12 rows)

你不应该忘记数据的顺序,如下的例子:

$ INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0001.0001');
$ INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0001.0002');
$ INSERT INTO comments (user_id, description, path) VALUES ( 9, md5(random()::text), '0001.0003.0001.0003');
$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*';
user_id |   path
---------+--------------------------
  6 | 0001.0003
  8 | 0001.0003.0001
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  5 | 0001.0003.0002.0003
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
  9 | 0001.0003.0001.0001
  9 | 0001.0003.0001.0002
  9 | 0001.0003.0001.0003
(15 rows)

现在进行排序:

$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*' ORDER by path;
 user_id |   path
---------+--------------------------
  6 | 0001.0003
  8 | 0001.0003.0001
  9 | 0001.0003.0001.0001
  9 | 0001.0003.0001.0002
  9 | 0001.0003.0001.0003
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
  5 | 0001.0003.0002.0003
(15 rows)

可以在lquery的非星号标签的末尾添加几个修饰符,以使其比完全匹配更匹配:
“ @”-不区分大小写匹配,例如a @匹配A
“ *”-匹配任何带有该前缀的标签,例如foo *匹配foobar
“%”-匹配以下划线开头的单词

$ SELECT user_id, path FROM comments WHERE path ~ '0001.*{1,2}.0001|0002.*' ORDER by path;
 user_id |   path
---------+--------------------------
  2 | 0001.0001.0001
  2 | 0001.0001.0001.0001
  1 | 0001.0001.0001.0002
  5 | 0001.0001.0001.0003
  6 | 0001.0002.0001
  8 | 0001.0003.0001
  9 | 0001.0003.0001.0001
  9 | 0001.0003.0001.0002
  9 | 0001.0003.0001.0003
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
  5 | 0001.0003.0002.0003
(19 rows)

我们来为parent ‘0001.0003'找到所有直接的childrens,见下:

$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*{1}' ORDER by path;
 user_id |  path
---------+----------------
  8 | 0001.0003.0001
  9 | 0001.0003.0002
(2 rows)

为parent ‘0001.0003'找到所有的childrens,见下:

$ SELECT user_id, path FROM comments WHERE path ~ '0001.0003.*' ORDER by path;
 user_id |   path
---------+--------------------------
  6 | 0001.0003
  8 | 0001.0003.0001
  9 | 0001.0003.0001.0001
  9 | 0001.0003.0001.0002
  9 | 0001.0003.0001.0003
  9 | 0001.0003.0002
  11 | 0001.0003.0002.0001
  2 | 0001.0003.0002.0002
  7 | 0001.0003.0002.0002.0001
  20 | 0001.0003.0002.0002.0002
  31 | 0001.0003.0002.0002.0003
  22 | 0001.0003.0002.0002.0004
  34 | 0001.0003.0002.0002.0005
  22 | 0001.0003.0002.0002.0006
  5 | 0001.0003.0002.0003
(15 rows)

为children ‘0001.0003.0002.0002.0005'找到parent:

$ SELECT user_id, path FROM comments WHERE path = subpath('0001.0003.0002.0002.0005', 0, -1) ORDER by path;
 user_id |  path
---------+---------------------
  2 | 0001.0003.0002.0002
(1 row)

以上就是如何在PostgreSQL中利用ltree处理层次结构数据,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注亿速云行业资讯频道。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI