这篇文章给大家分享的是有关python特征生成是什么意思的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
Python是一种跨平台的、具有解释性、编译性、互动性和面向对象的脚本语言,其最初的设计是用于编写自动化脚本,随着版本的不断更新和新功能的添加,常用于用于开发独立的项目和大型项目。
业内常说数据决定了模型效果的上限,机械学习算法通过数据特征进行预测,良好的特征可以显着提高模型效果。这意味着通过特征生成(即从数据设计中加工模型的可用特征)是特征工程的重要一步。
一、特征生成作用
1、增加特征的表达能力,提升模型效果;
(如体重除以身高就是表达健康情况的重要特征,而单纯看身高或体重对健康情况表达就有限。)
2、可以融入业务上的理解设计特征,增加模型的可解释性。
二、特征生成方法
1、聚合方式
对存在一对多的字段,将其对应多条记录分组聚合后统计平均值、计数、最大值等数据特征。
# 自定义分组聚合统计函数 def x2_sum(group): return sum(group**2) df.groupby('cust_no').C1.apply(x2_sum)
2、转换方式
对字段间做加减乘除等运算生成数据特征的过程,对不同字段类型有不同转换方式。
感谢各位的阅读!关于“python特征生成是什么意思”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。