这篇文章给大家介绍使用R语言怎么实现一个随机森林算法,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
R语言包“randomForest”用于创建随机森林。
在R语言控制台中使用以下命令安装软件包。 您还必须安装相关软件包(如果有)。
install.packages("randomForest")
包“randomForest”具有函数randomForest(),用于创建和分析随机森林。
在R语言中创建随机森林的基本语法是
randomForest(formula, data)
以下是所使用的参数的描述
formula是描述预测变量和响应变量的公式。
data是所使用的数据集的名称。
我们将使用名为readingSkills的R语言内置数据集来创建决策树。 它描述了某人的readingSkills的分数,如果我们知道变量“age”,“shoesize”,“score”,以及该人是否是母语。
以下是示例数据。
# Load the party package. It will automatically load other required packages. library(party) # Print some records from data set readingSkills. print(head(readingSkills))
当我们执行上面的代码,它产生以下结果及图表
nativeSpeaker age shoeSize score 1 yes 5 24.83189 32.29385 2 yes 6 25.95238 36.63105 3 no 11 30.42170 49.60593 4 yes 7 28.66450 40.28456 5 yes 11 31.88207 55.46085 6 yes 10 30.07843 52.83124 Loading required package: methods Loading required package: grid ............................... ...............................
我们将使用randomForest()函数来创建决策树并查看它的图。
# Load the party package. It will automatically load other required packages. library(party) library(randomForest) # Create the forest. output.forest <- randomForest(nativeSpeaker ~ age + shoeSize + score, data = readingSkills) # View the forest results. print(output.forest) # Importance of each predictor. print(importance(fit,type = 2))
当我们执行上面的代码,它产生以下结果
Call: randomForest(formula = nativeSpeaker ~ age + shoeSize + score, data = readingSkills) Type of random forest: classification Number of trees: 500 No. of variables tried at each split: 1 OOB estimate of error rate: 1% Confusion matrix: no yes class.error no 99 1 0.01 yes 1 99 0.01 MeanDecreaseGini age 13.95406 shoeSize 18.91006 score 56.73051
R语言是用于统计分析、绘图的语言和操作环境,属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
关于使用R语言怎么实现一个随机森林算法就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。