小编给大家分享一下PyTorch dataloader中shuffle=True的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
之前不了解shuffle的实际效果,假设有数据a,b,c,d,不知道batch_size=2后打乱,具体是如下哪一种情况:
1.先按顺序取batch,对batch内打乱,即先取a,b,a,b进行打乱;
2.先打乱,再取batch。
shuffle (bool, optional): set to ``True`` to have the data reshuffled
at every epoch (default: ``False``).
if shuffle:
sampler = RandomSampler(dataset) #此时得到的是索引
补充:简单测试一下pytorch dataloader里的shuffle=True是如何工作的
import sys
import torch
import random
import argparse
import numpy as np
import pandas as pd
import torch.nn as nn
from torch.nn import functional as F
from torch.optim import lr_scheduler
from torchvision import datasets, transforms
from torch.utils.data import TensorDataset, DataLoader, Dataset
class DealDataset(Dataset):
def __init__(self):
xy = np.loadtxt(open('./iris.csv','rb'), delimiter=',', dtype=np.float32)
#data = pd.read_csv("iris.csv",header=None)
#xy = data.values
self.x_data = torch.from_numpy(xy[:, 0:-1])
self.y_data = torch.from_numpy(xy[:, [-1]])
self.len = xy.shape[0]
def __getitem__(self, index):
return self.x_data[index], self.y_data[index]
def __len__(self):
return self.len
dealDataset = DealDataset()
train_loader2 = DataLoader(dataset=dealDataset,
batch_size=2,
shuffle=True)
#print(dealDataset.x_data)
for i, data in enumerate(train_loader2):
inputs, labels = data
#inputs, labels = Variable(inputs), Variable(labels)
print(inputs)
#print("epoch:", epoch, "的第" , i, "个inputs", inputs.data.size(), "labels", labels.data.size())
简易数据集
shuffle之后的结果,每次都是随机打乱,然后分成大小为n的若干个mini-batch.
1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单
以上是“PyTorch dataloader中shuffle=True的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。