本篇文章为大家展示了Python中Series有哪些使用方法,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。
1、方法说明
(1)排序
sort_values()
通过ascending参数来确定升序还是降序,True表示升序
(2)空判断
isnull() - 判空
notnull() - 判非空
(3)缺失值处理
dropna()
删除
(4)统计基本信息
describe()
2、实例
>>> data
a 10
b 11
c 12
d 13
e 14
dtype: int64
>>> data.sort_values(ascending = False) #降序排序
e 14
d 13
c 12
b 11
a 10
dtype: int64
>>> data = pd.Series([100,200,np.nan,200,np.nan,400],list('abcdef')) #创建含有缺失值的对象
>>> data
a 100.0
b 200.0
c NaN
d 200.0
e NaN
f 400.0
dtype: float64
>>> data.isnull() #判空
a False
b False
c True
d False
e True
f False
dtype: bool
>>> data.notnull() #判非空
a True
b True
c False
d True
e False
f True
dtype: bool
>>> data.dropna() #删除缺失值
a 100.0
b 200.0
d 200.0
f 400.0
dtype: float64
>>> data.fillna(data.mean()) #设置默认值为均值
a 100.0
b 200.0
c 225.0
d 200.0
e 225.0
f 400.0
dtype: float64
>>> data.drop_duplicates() #去重
a 100.0
b 200.0
c NaN
f 400.0
dtype: float64
>>> data.value_counts() #统计频率
200.0 2
100.0 1
400.0 1
dtype: int64
>>> data.describe() #对数据进行基本统计,统计时自动去掉了缺失值
count 4.000000
mean 225.000000
std 125.830574
min 100.000000
25% 175.000000
50% 200.000000
75% 250.000000
max 400.000000
dtype: float64
1、云计算,典型应用OpenStack。2、WEB前端开发,众多大型网站均为Python开发。3.人工智能应用,基于大数据分析和深度学习而发展出来的人工智能本质上已经无法离开python。4、系统运维工程项目,自动化运维的标配就是python+Django/flask。5、金融理财分析,量化交易,金融分析。6、大数据分析。
上述内容就是Python中Series有哪些使用方法,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注亿速云行业资讯频道。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://www.py.cn/jishu/jichu/30571.html