温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何使用tensorflow实现反向传播求导

发布时间:2021-05-27 10:18:41 来源:亿速云 阅读:319 作者:小新 栏目:开发技术

这篇文章给大家分享的是有关如何使用tensorflow实现反向传播求导的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。

看代码吧~

X=tf.constant([-1,-2],dtype=tf.float32)
w=tf.Variable([2.,3.])
truth=[3.,3.]
Y=w*X
# cost=tf.reduce_sum(tf.reduce_sum(Y*truth)/(tf.sqrt(tf.reduce_sum(tf.square(Y)))*tf.sqrt(tf.reduce_sum(tf.square(truth)))))
cost=Y[1]*Y
optimizer = tf.train.GradientDescentOptimizer(1).minimize(cost)
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    print(sess.run(Y))
    print(sess.run(w))
    print(sess.run(cost))
 
    print(sess.run(Y))
    sess.run(optimizer)
 
    print(sess.run(w))

结果如下

如何使用tensorflow实现反向传播求导

W由[2,3]变成[-4,-25]

过程:

f=y0*y=w0*x0*w*x=[w1*x1*w0*x0,w1*x1*w1*x1,]

f对w0求导,得w1*x0*x1+0=6 ,所以新的w0=w0-6=-4

f对w1求导,得 w0*x0*x1+2*w1*x1*x1=28,所以新的w1=w1-28=-25

补充:【TensorFlow篇】--反向传播

一、前述

反向自动求导是 TensorFlow 实现的方案,首先,它执行图的前向阶段,从输入到输出,去计算节点
值,然后是反向阶段,从输出到输入去计算所有的偏导。

二、具体

1、举例

如何使用tensorflow实现反向传播求导

图是第二个阶段,在第一个阶段中,从 x =3和 y =4开始去计算所有的节点值

f ( x / y )=x 2 * y + y + 2

求解的想法是逐渐的从图上往下,计算 f ( x , y )的偏导,使用每一个连续的节点,直到我们到达变量节
点,严重依赖链式求导法则!

2.具体过程:

因为n7是输出节点,所以f=n7,所以?f/??7= 1

让我们继续往下走到n5节点,?f/??5=?f/??7∗??7/??5 . 我们已知?f/??7=1,所以我们需要知道??7/??5 ,因为n7=n5+n6,所以我们求得??7/??5=1,所以?f/??5=1*1=1

现在我们继续走到节点n4,?f/??4=?f/??5∗??5/??4,因为n5=n4*n2,我们求得�?5/??4=n2,?f/??4=1*4

沿着图一路向下,我们可以计算出所有节点,就能计算出 ??/?x= 24,??/?y= 10

那我们就可以利用和上面类似的方式方法去计算??/??

感谢各位的阅读!关于“如何使用tensorflow实现反向传播求导”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI