这篇文章给大家介绍怎么在pytorch中将HWC转换为CHW,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
import torch
import numpy as np
from torchvision.transforms import ToTensor
t = torch.tensor(np.arange(24).reshape(2,4,3))
print(t)
#HWC 转CHW
print(t.transpose(0,2).transpose(1,2))
print(t.permute(2,0,1))
print(ToTensor()(t.numpy()))
D:\anaconda\python.exe C:/Users/liuxinyu/Desktop/pytorch_test/day3/hwc转chw.py
tensor([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]],[[12, 13, 14],
[15, 16, 17],
[18, 19, 20],
[21, 22, 23]]], dtype=torch.int32)
tensor([[[ 0, 3, 6, 9],
[12, 15, 18, 21]],[[ 1, 4, 7, 10],
[13, 16, 19, 22]],[[ 2, 5, 8, 11],
[14, 17, 20, 23]]], dtype=torch.int32)
tensor([[[ 0, 3, 6, 9],
[12, 15, 18, 21]],[[ 1, 4, 7, 10],
[13, 16, 19, 22]],[[ 2, 5, 8, 11],
[14, 17, 20, 23]]], dtype=torch.int32)
tensor([[[ 0, 3, 6, 9],
[12, 15, 18, 21]],[[ 1, 4, 7, 10],
[13, 16, 19, 22]],[[ 2, 5, 8, 11],
[14, 17, 20, 23]]], dtype=torch.int32)Process finished with exit code 0
补充:opencv python 把图(cv2下)BGR转RGB,且HWC转CHW
img = cv2.imread("001.jpg")
img_ = img[:,:,::-1].transpose((2,0,1))
① 在opencv里,图格式HWC,其余都是CHW,故transpose((2,0,1))
② img[:,:,::-1]对应H、W、C,彩图是3通道,即C是3层。opencv里对应BGR,故通过C通道的 ::-1 就是把BGR转为RGB
注: [::-1] 代表顺序相反操作
③ 若不涉及C通道的BGR转RGB,如Img[:,:,0]代表B通道,也就是蓝色分量图像;Img[:,:,1]代表G通道,也就是绿色分量图像;
Img[:,:,2]代表R通道,也就是红色分量图像。
补充:python opencv 中将图像由BGR转换为CHW用于后期的深度训练
import cv2 as cv
import numpy as np
img = cv.imread("lenna.png")
#BGR HWC -> CHW 12 -> HCW 01 -> CHW
transform_img = img.swapaxes(1,2).swapaxes(0,1)
print(img.shape)
print(transform_img.shape)
cv.imshow("image0 ",transform_img[0])
cv.imshow("image1",transform_img[1])
cv.imshow("image2",transform_img[2])
cv.waitKey(0)
cv.destroyAllWindows()
关于怎么在pytorch中将HWC转换为CHW就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。