温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何解决python缺失值的问题

发布时间:2021-06-09 09:41:11 来源:亿速云 阅读:179 作者:小新 栏目:编程语言

这篇文章主要介绍如何解决python缺失值的问题,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

1、解决方法

(1)忽视元组。

缺少类别标签时,通常这样做(假设挖掘任务与分类有关),除非元组有多个属性缺失值,否则该方法不太有效。当个属性缺值的百分比变化很大时,其性能特别差。

(2)人工填写缺失值。

一般来说,这种方法需要很长时间,当数据集大且缺少很多值时,这种方法可能无法实现。

(3)使用全局常量填充缺失值。

将缺失的属性值用同一常数(如Unknown或负无限)替换。如果缺失值都是用unknown替换的话,挖掘程序可能会认为形成有趣的概念。因为有同样的价值unknown。因此,这种方法很简单,但不可靠。

(4)使用与给定元组相同类型的所有样本的属性平均值。

(5)使用最可能的值填充缺失值。

可以通过回归、使用贝叶斯形式化的基于推理的工具和决策树的总结来决定。

2、实例

import numpy as np
 
from sklearn.preprocessing import Imputer
 
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
 
import numpy as np
from sklearn.preprocessing import Imputer
 
###1.使用均值填充缺失值
imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
imp.fit([[1, 2], [np.nan, 3], [7, 6]])
 
X = [[np.nan, 2], [6, np.nan], [7, 6]]
print(imp.transform(X))  
[[4.         2.        ]
 [6.         3.66666667]
 [7.         6.        ]]

以上是“如何解决python缺失值的问题”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI