温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Go中Sync.Map的知识点有哪些

发布时间:2021-09-23 14:15:07 来源:亿速云 阅读:128 作者:iii 栏目:编程语言

这篇文章主要讲解了“ Go中Sync.Map的知识点有哪些”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“ Go中Sync.Map的知识点有哪些”吧!

sync.Map 优势

在 Go 官方文档中明确指出 Map 类型的一些建议:

Go中Sync.Map的知识点有哪些

  • 多个 goroutine 的并发使用是安全的,不需要额外的锁定或协调控制。

  • 大多数代码应该使用原生的 map,而不是单独的锁定或协调控制,以获得更好的类型安全性和维护性。

同时 Map 类型,还针对以下场景进行了性能优化:

  • 当一个给定的键的条目只被写入一次但被多次读取时。例如在仅会增长的缓存中,就会有这种业务场景。

  • 当多个 goroutines 读取、写入和覆盖不相干的键集合的条目时。

这两种情况与 Go map 搭配单独的 Mutex 或 RWMutex 相比较,使用 Map 类型可以大大减少锁的争夺。

性能测试

听官方文档介绍了一堆好处后,他并没有讲到缺点,所说的性能优化后的优势又是否真实可信。我们一起来验证一下。

首先我们定义基本的数据结构:

// 代表互斥锁 type FooMap struct {  sync.Mutex  data map[int]int }  // 代表读写锁 type BarRwMap struct {  sync.RWMutex  data map[int]int }  var fooMap *FooMap var barRwMap *BarRwMap var syncMap *sync.Map  // 初始化基本数据结构 func init() {  fooMap = &FooMap{data: make(map[int]int, 100)}  barRwMap = &BarRwMap{data: make(map[int]int, 100)}  syncMap = &sync.Map{} }

在配套方法上,常见的增删改查动作我们都编写了相应的方法。用于后续的压测(只展示部分代码):

func builtinRwMapStore(k, v int) {  barRwMap.Lock()  defer barRwMap.Unlock()  barRwMap.data[k] = v }  func builtinRwMapLookup(k int) int {  barRwMap.RLock()  defer barRwMap.RUnlock()  if v, ok := barRwMap.data[k]; !ok {   return -1  } else {   return v  } }  func builtinRwMapDelete(k int) {  barRwMap.Lock()  defer barRwMap.Unlock()  if _, ok := barRwMap.data[k]; !ok {   return  } else {   delete(barRwMap.data, k)  } }

其余的类型方法基本类似,考虑重复篇幅问题因此就不在此展示了。

压测方法基本代码如下:

func BenchmarkBuiltinRwMapDeleteParalell(b *testing.B) {  b.RunParallel(func(pb *testing.PB) {   r := rand.New(rand.NewSource(time.Now().Unix()))   for pb.Next() {    k := r.Intn(100000000)    builtinRwMapDelete(k)   }  }) }

这块主要就是增删改查的代码和压测方法的准备,压测代码直接复用的是大白大佬的 go19-examples/benchmark-for-map 项目。

也可以使用 Go 官方提供的 map_bench_test.go,有兴趣的小伙伴可以自己拉下来运行试一下。

压测结果

1)写入:

方法名含义压测结果
BenchmarkBuiltinMapStoreParalell-4map+mutex 写入元素237.1 ns/op
BenchmarkSyncMapStoreParalell-4sync.map 写入元素509.3 ns/op
BenchmarkBuiltinRwMapStoreParalell-4map+rwmutex 写入元素207.8 ns/op

在写入元素上,最慢的是 sync.map 类型,其次是原生 map+互斥锁(Mutex),最快的是原生 map+读写锁(RwMutex)。

总体的排序(从慢到快)为:SyncMapStore < MapStore < RwMapStore。

2)查找:

方法名含义压测结果
BenchmarkBuiltinMapLookupParalell-4map+mutex 查找元素166.7 ns/op
BenchmarkBuiltinRwMapLookupParalell-4map+rwmutex 查找元素60.49 ns/op
BenchmarkSyncMapLookupParalell-4sync.map 查找元素53.39 ns/op

在查找元素上,最慢的是原生 map+互斥锁,其次是原生 map+读写锁。最快的是 sync.map 类型。

总体的排序为:MapLookup < RwMapLookup < SyncMapLookup。

3)删除:

方法名含义压测结果
BenchmarkBuiltinMapDeleteParalell-4map+mutex 删除元素168.3 ns/op
BenchmarkBuiltinRwMapDeleteParalell-4map+rwmutex 删除元素188.5 ns/op
BenchmarkSyncMapDeleteParalell-4sync.map 删除元素41.54 ns/op

在删除元素上,最慢的是原生 map+读写锁,其次是原生 map+互斥锁,最快的是 sync.map 类型。

总体的排序为:RwMapDelete < MapDelete < SyncMapDelete。

场景分析

根据上述的压测结果,我们可以得出 sync.Map 类型:

  • 在读和删场景上的性能是最佳的,领先一倍有多。

  • 在写入场景上的性能非常差,落后原生 map+锁整整有一倍之多。

因此在实际的业务场景中。假设是读多写少的场景,会更建议使用 sync.Map 类型。

但若是那种写多的场景,例如多 goroutine 批量的循环写入,那就建议另辟途径了,性能不忍直视(无性能要求另当别论)。

sync.Map 剖析

清楚如何测试,测试的结果后。我们需要进一步深挖,知其所以然。

为什么 sync.Map 类型的测试结果这么的 “偏科”,为什么读操作性能这么高,写操作性能低的可怕,他是怎么设计的?

数据结构

sync.Map 类型的底层数据结构如下:

type Map struct {  mu Mutex  read atomic.Value // readOnly  dirty map[interface{}]*entry  misses int }  // Map.read 属性实际存储的是 readOnly。 type readOnly struct {  m       map[interface{}]*entry  amended bool }
  • mu:互斥锁,用于保护 read 和 dirty。

  • read:只读数据,支持并发读取(atomic.Value 类型)。如果涉及到更新操作,则只需要加锁来保证数据安全。

  • read 实际存储的是 readOnly 结构体,内部也是一个原生 map,amended 属性用于标记 read 和 dirty  的数据是否一致。

  • dirty:读写数据,是一个原生 map,也就是非线程安全。操作 dirty 需要加锁来保证数据安全。

  • misses:统计有多少次读取 read 没有命中。每次 read 中读取失败后,misses 的计数值都会加 1。

在 read 和 dirty 中,都有涉及到的结构体:

type entry struct {  p unsafe.Pointer // *interface{} }

其包含一个指针 p, 用于指向用户存储的元素(key)所指向的 value 值。

在此建议你必须搞懂 read、dirty、entry,再往下看,食用效果会更佳,后续会围绕着这几个概念流转。

查找过程

划重点,Map 类型本质上是有两个 “map”。一个叫 read、一个叫 dirty,长的也差不多:

Go中Sync.Map的知识点有哪些

sync.Map 的 2 个 map

当我们从 sync.Map 类型中读取数据时,其会先查看 read 中是否包含所需的元素:

  • 若有,则通过 atomic 原子操作读取数据并返回。

  • 若无,则会判断 read.readOnly 中的 amended 属性,他会告诉程序 dirty 是否包含 read.readOnly.m  中没有的数据;因此若存在,也就是 amended 为 true,将会进一步到 dirty 中查找数据。

sync.Map 的读操作性能如此之高的原因,就在于存在 read 这一巧妙的设计,其作为一个缓存层,提供了快路径(fast path)的查找。

同时其结合 amended 属性,配套解决了每次读取都涉及锁的问题,实现了读这一个使用场景的高性能。

写入过程

我们直接关注 sync.Map 类型的 Store 方法,该方法的作用是新增或更新一个元素。

源码如下:

func (m *Map) Store(key, value interface{}) {  read, _ := m.read.Load().(readOnly)  if e, ok := read.m[key]; ok && e.tryStore(&value) {   return  }   ... }

调用 Load 方法检查 m.read 中是否存在这个元素。若存在,且没有被标记为删除状态,则尝试存储。

若该元素不存在或已经被标记为删除状态,则继续走到下面流程:

func (m *Map) Store(key, value interface{}) {  ...  m.mu.Lock()  read, _ = m.read.Load().(readOnly)  if e, ok := read.m[key]; ok {   if e.unexpungeLocked() {    m.dirty[key] = e   }   e.storeLocked(&value)  } else if e, ok := m.dirty[key]; ok {   e.storeLocked(&value)  } else {   if !read.amended {    m.dirtyLocked()    m.read.Store(readOnly{m: read.m, amended: true})   }   m.dirty[key] = newEntry(value)  }  m.mu.Unlock() }

由于已经走到了 dirty 的流程,因此开头就直接调用了 Lock 方法上互斥锁,保证数据安全,也是凸显性能变差的第一幕。

其分为以下三个处理分支:

  • 若发现 read 中存在该元素,但已经被标记为已删除(expunged),则说明 dirty 不等于 nil(dirty  中肯定不存在该元素)。其将会执行如下操作。

    • 将元素状态从已删除(expunged)更改为 nil。

    • 将元素插入 dirty 中。

  • 若发现 read 中不存在该元素,但 dirty 中存在该元素,则直接写入更新 entry 的指向。

  • 若发现 read 和 dirty 都不存在该元素,则从 read 中复制未被标记删除的数据,并向 dirty 中插入该元素,赋予元素值 entry  的指向。

我们理一理,写入过程的整体流程就是:

  • 查 read,read 上没有,或者已标记删除状态。

  • 上互斥锁(Mutex)。

  • 操作 dirty,根据各种数据情况和状态进行处理。

回到最初的话题,为什么他写入性能差那么多。究其原因:

  • 写入一定要会经过 read,无论如何都比别人多一层,后续还要查数据情况和状态,性能开销相较更大。

  • (第三个处理分支)当初始化或者 dirty 被提升后,会从 read 中复制全量的数据,若 read 中数据量大,则会影响性能。

可得知 sync.Map 类型不适合写多的场景,读多写少是比较好的。

若有大数据量的场景,则需要考虑 read 复制数据时的偶然性能抖动是否能够接受。

删除过程

这时候可能有小伙伴在想了。写入过程,理论上和删除不会差太远。怎么 sync.Map 类型的删除的性能似乎还行,这里面有什么猫腻?

源码如下:

func (m *Map) LoadAndDelete(key interface{}) (value interface{}, loaded bool) {  read, _ := m.read.Load().(readOnly)  e, ok := read.m[key]  ...   if ok {   return e.delete()  } }

删除是标准的开场,依然先到 read 检查该元素是否存在。

若存在,则调用 delete 标记为 expunged(删除状态),非常高效。可以明确在 read 中的元素,被删除,性能是非常好的。

若不存在,也就是走到 dirty 流程中:

func (m *Map) LoadAndDelete(key interface{}) (value interface{}, loaded bool) {  ...  if !ok && read.amended {   m.mu.Lock()   read, _ = m.read.Load().(readOnly)   e, ok = read.m[key]   if !ok && read.amended {    e, ok = m.dirty[key]    delete(m.dirty, key)    m.missLocked()   }   m.mu.Unlock()  }  ...  return nil, false }

若 read 中不存在该元素,dirty 不为空,read 与 dirty 不一致(利用 amended 判别),则表明要操作  dirty,上互斥锁。

再重复进行双重检查,若 read 仍然不存在该元素。则调用 delete 方法从 dirty 中标记该元素的删除。

需要注意,出现频率较高的 delete 方法:

func (e *entry) delete() (value interface{}, ok bool) {  for {   p := atomic.LoadPointer(&e.p)   if p == nil || p == expunged {    return nil, false   }   if atomic.CompareAndSwapPointer(&e.p, p, nil) {    return *(*interface{})(p), true   }  } }

该方法都是将 entry.p 置为 nil,并且标记为 expunged(删除状态),而不是真真正正的删除。

注:不要误用 sync.Map,前段时间从字节大佬分享的案例来看,他们将一个连接作为 key 放了进去,于是和这个连接相关的,例如:buffer  的内存就永远无法释放了...

感谢各位的阅读,以上就是“ Go中Sync.Map的知识点有哪些”的内容了,经过本文的学习后,相信大家对 Go中Sync.Map的知识点有哪些这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI