本篇内容介绍了“Python代码中的装饰器很重要吗”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
要理解什么是装饰器,您首先需要熟悉Python处理函数的方式。从它的观点来看,函数和对象没有什么不同。它们有属性,可以重新分配:
def func(): print('hello from func') func() > hello from func new_func = func new_func() > hello from func print(new_func.__name__) > func
此外,你还可以将它们作为参数传递给其他函数:
def func(): print('hello from func') def call_func_twice(callback): callback() callback() call_func_twice(func) > hello from func > hello from func
现在,我们介绍装饰器。装饰器(decorator)用于修改函数或类的行为。实现这一点的方法是定义一个返回另一个函数的函数(装饰器)。这听起来很复杂,但是通过这个例子你会理解所有的东西:
def logging_decorator(func): def logging_wrapper(*args, **kwargs): print(f'Before {func.__name__}') func(*args, **kwargs) print(f'After {func.__name__}') return logging_wrapper @logging_decorator def sum(x, y): print(x + y) sum(2, 5) > Before sum > 7 > After sum
让我们一步一步来:
鸿蒙官方战略合作共建——HarmonyOS技术社区
首先,我们在第1行定义logging_decorator函数。它只接受一个参数,也就是我们要修饰的函数。
在内部,我们定义了另一个函数:logging_wrapper。然后返回logging_wrapper,并使用它来代替原来的修饰函数。
在第7行,您可以看到如何将装饰器应用到sum函数。
在第11行,当我们调用sum时,它不仅仅调用sum。它将调用logging_wrapper,它将在调用sum之前和之后记录日志。
这很简单:可读性。Python因其清晰简洁的语法而备受赞誉,装饰器也不例外。如果有任何行为是多个函数共有的,那么您可能需要制作一个装饰器。下面是一些可能会派上用场的例子:
鸿蒙官方战略合作共建——HarmonyOS技术社区
在运行时检查实参类型
基准函数调用
缓存功能的结果
计数函数调用
检查元数据(权限、角色等)
元编程
和更多…
现在我们将列出一些代码示例。
带有返回值的装饰器
假设我们想知道每个函数调用需要多长时间。而且,函数大多数时候都会返回一些东西,所以装饰器也必须处理它:
def timer_decorator(func): def timer_wrapper(*args, **kwargs): import datetime before = datetime.datetime.now() result = func(*args,**kwargs) after = datetime.datetime.now() print "Elapsed Time = {0}".format(after-before) return result @timer_decorator def sum(x, y): print(x + y) return x + y sum(2, 5) > 7 > Elapsed Time = some time
可以看到,我们将返回值存储在第5行的result中。但在返回之前,我们必须完成对函数的计时。这是一个没有装饰者就不可能实现的行为例子。
带有参数的装饰器
有时候,我们想要一个接受值的装饰器(比如Flask中的@app.route('/login'):
def permission_decorator(permission): def _permission_decorator(func): def permission_wrapper(*args, **kwargs): if someUserApi.hasPermission(permission): result = func(*args, **kwargs) return result return None return permission wrapper return _permission_decorator @permission_decorator('admin') def delete_user(user): someUserApi.deleteUser(user)
为了实现这一点,我们定义了一个额外的函数,它接受一个参数并返回一个装饰器。
带有类的装饰器
使用类代替函数来修饰是可能的。唯一的区别是语法,所以请使用您更熟悉的语法。下面是使用类重写的日志装饰器:
class Logging: def __init__(self, function): self.function = function def __call__(self, *args, **kwargs): print(f'Before {self.function.__name__}') self.function(*args, **kwargs) print(f'After {self.function.__name__}') @Logging def sum(x, y): print(x + y) sum(5, 2) > Before sum > 7 > After sum
这样做的好处是,您不必处理嵌套函数。你所需要做的就是定义一个类并覆盖__call__方法。
装饰类
有时,您可能想要修饰类中的每个方法。你可以这样写
class MyClass: @decorator def func1(self): pass @decorator def func2(self): pass
但如果你有很多方法,这可能会失控。值得庆幸的是,有一种方法可以一次性装饰整个班级:
def logging_decorator(func): def logging_wrapper(*args, **kwargs): print(f'Before {func.__name__}') result = func(*args, **kwargs) print(f'After {func.__name__}') return result return logging_wrapper def log_all_class_methods(cls): class NewCls(object): def __init__(self, *args, **kwargs): self.original = cls(*args, **kwargs) def __getattribute__(self, s): try: x = super(NewCls,self).__getattribute__(s) except AttributeError: pass else: return x x = self.original.__getattribute__(s) if type(x) == type(self.__init__): return logging_decorator(x) else: return x return NewCls @log_all_class_methods class SomeMethods: def func1(self): print('func1') def func2(self): print('func2') methods = SomeMethods() methods.func1() > Before func1 > func1 > After func1
现在,不要惊慌。这看起来很复杂,但逻辑是一样的:
首先,我们让logging_decorator保持原样。它将应用于类的所有方法。
然后我们定义一个新的装饰器:log_all_class_methods。它类似于普通的装饰器,但却返回一个类。
NewCls有一个自定义的__getattribute__。对于对原始类的所有调用,它将使用logging_decorator装饰函数。
内置的修饰符
您不仅可以定义自己的decorator,而且在标准库中也提供了一些decorator。我将列出与我一起工作最多的三个人:
@property -一个内置插件的装饰器,它允许你为类属性定义getter和setter。
@lru_cache - functools模块的装饰器。它记忆函数参数和返回值,这对于纯函数(如阶乘)很方便。
@abstractmethod——abc模块的装饰器。指示该方法是抽象的,且缺少实现细节。
“Python代码中的装饰器很重要吗”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。