温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

数据科学家该了解的Python自动库有哪些

发布时间:2021-10-26 15:25:57 来源:亿速云 阅读:145 作者:iii 栏目:编程语言

本篇内容主要讲解“数据科学家该了解的Python自动库有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“数据科学家该了解的Python自动库有哪些”吧!

1.auto-sklearn

auto-sklearn是一个自动机器学习工具包,无缝集成业内许多人都熟悉的标准sklearn界面。通过使用贝叶斯优化等最新方法,构建库来导航可能的模型空间,并学习推断特定的配置是否能很好地完成给定任务。

这个库是由Matthias  Feurer等人创建,其技术细节在一篇名为《高效和鲁棒机器学习》的论文中进行了描述。Feurer写道:“我们引入了一个基于scikit-learn的新鲁棒性自动系统——使用15个分类器、14个特征预处理方法和4个数据预处理方法生成110个超参数的结构化假设空间。”

auto-sklearn可能是入门AutoML的最佳库。除了挖掘数据集的数据准备和模型选择之外,它还能学习类似数据集上性能良好的模型。

数据科学家该了解的Python自动库有哪些

图源:Efficient and Robust Automated Machine Learning(2015)

在有效实施的基础上,auto-sklearn将所需用户交互降至最低。可以使用pip install auto-sklearn来安装库。

可以使用的两大类是Auto Sklearn Classifier和Auto Sklearn  Regressor,分别用于分类和回归任务。两者都有相同的用户指定参数,其中最重要的是时间限制和集成大小。

import autosklearn as ask             #ask.regression.AutoSklearnRegressor()for regression tasks             model =ask.classification.AutoSklearnClassifier(ensemble_size=10, #size of the endensemble (minimum is 1)                                                             time_left_for_this_task=120, #the number ofseconds the process runs for                                                             per_run_time_limit=30) #maximum secondsallocated per model             model.fit(X_train, y_train) #begin fittingthe search model             print(model.sprint_statistics()) #printstatistics for the search             y_predictions = model.predict(X_test) #get predictionsfrom the model

2.TPOT

TPOT是另一个自动化建模管道的Python库,它更强调数据准备、建模算法和模型超参数。它通过一种进化的基于树结构自动化特征选择、预处理和构造,“该结构称为基于树管道优化工具(TPOT),可以自动设计和优化机器学习管道。”

数据科学家该了解的Python自动库有哪些

图源:数据科学自动化中基于树的流水线优化工具的评价(2016)

程序或管道以树状图呈现。遗传程序选择并进化某些程序,以最大化每个自动机器学习管道的最终结果。

正如Pedro  Domingos所说:“一个拥有大量数据的愚蠢算法胜过一个拥有有限数据的聪明算法。”事实确实如此,TPOT可以生成复杂的数据预处理管道。

数据科学家该了解的Python自动库有哪些

图源:TPOT documentation

就像许多AutoML算法一样,TPOT管道优化器可能要花几个小时才能产生好的结果,你可以在Kaggle  commits或者谷歌Colab中运行这些长时间的程序。

import tpot       pipeline_optimizer = tpot.TPOTClassifier(generations=5, #number ofiterations to run the training                                               population_size=20, #number ofindividuals to train                                                cv=5) #number of foldsin StratifiedKFold       pipeline_optimizer.fit(X_train, y_train) #fit thepipeline optimizer - can take a long time       print(pipeline_optimizer.score(X_test, y_test)) #print scoringfor the pipeline       pipeline_optimizer.export( tpot_exported_pipeline.py ) #export thepipeline - in Python code!

也许TPOT的最佳特性是可以将模型导出为Python代码文件,方便以后使用。

3.HyperOpt

由James  Bergstra开发的HyperOpt是一个用于贝叶斯优化的Python库。为大规模优化具有数百个参数的模型而设计,该库明确用于优化机器学习管道,并具有在多个核和机器之间扩展优化过程的选项。

“我们的方法是公开一个性能度量(例如验证示例上的分类精度)如何从超参数计算的底层表达式图,这些超参数不仅控制单个处理步骤的应用,而且甚至控制包含哪些处理步骤。”

然而,HyperOpt很难直接使用,因为它存在技术壁垒,需要仔细指定优化过程和参数。我建议使用HyperOpt-sklearn,这是一个包含sklearn库的HyperOpt包装器。

具体来说,尽管HyperOpt支持预处理,但其主要关注几十个进入特定模型的超参数。考虑一次HyperOpt-sklearn搜索的结果,在没有进行预处理的情况下,得到了一个梯度增强分类器:

{ learner : GradientBoostingClassifier(ccp_alpha=0.0, criterion= friedman_mse , init=None,     learning_rate=0.009132299586303643, loss= deviance ,     max_depth=None, max_features= sqrt ,     max_leaf_nodes=None, min_impurity_decrease=0.0,     min_impurity_split=None, min_samples_leaf=1,     min_samples_split=2, min_weight_fraction_leaf=0.0,     n_estimators=342, n_iter_no_change=None,     presort= auto , random_state=2,     subsample=0.6844206624548879, tol=0.0001,     validation_fraction=0.1, verbose=0,     warm_start=False),  preprocs : (),  ex_preprocs : ()}

构建HyperOpt-sklearn模型的文档提到,它比auto-sklearn要复杂得多,比TPOT稍微复杂一点。但如果超参数的作用很重要,那么多余的繁琐工作也是值得的。

4.AutoKeras

与标准的机器学习库相比,神经网络和深度学习要强大得多,因此也更难实现自动化。

  • 使用AutoKeras,神经结构搜索算法会找到最好的结构,比如一层中的神经元数量,层的数量,要合并的层,层的特定参数,比如过滤器的大小或Dropout中丢失的神经元的百分比等等。一旦搜索完成,就可以将其当作一个普通的TensorFlow/Keras模型来使用这个模型。

  • 通过使用AutoKeras,你可以构建一个包含复杂元素的模型,比如嵌入和空间缩减,否则那些仍在摸索深度学习的人将很难获得这些元素。

  • 当AutoKeras创建模型时,已完成并优化许多预处理,如向量化或清理文本数据。

  • 启动和训练搜索只需要两行代码。而AutoKeras拥有一个类似于keras的界面,所以它易于记忆和使用。

AutoKeras支持文本、图像和结构化数据,并为初学者和那些希望深入技术知识的人提供接口,AutoKeras使用进化神经结构搜索方法来消除困难和歧义。尽管AutoKeras运行的时间很长,但有许多用户指定的参数可用来控制运行时间、探索的模型数量、搜索空间大小等。

Hyperparameter      |Value     |BestValueSoFar                  text_block_1/block_type|transformer|transformer                        classification_head_1/dropout|0         |0                                  optimizer           |adam      |adam                               learning_rate       |0.001     |0.001                              text_block_1/max_tokens|20000     |20000                              text_block_1/text_to_int_sequence_1/output_sequence_length|200       |200                                text_block_1/transformer_1/pretraining|none     |none                               text_block_1/transformer_1/embedding_dim|32        |32                                 text_block_1/transformer_1/num_heads|2         |2                                  text_block_1/transformer_1/dense_dim|32        |32                                 text_block_1/transformer_1/dropout|0.25      |0.25                               text_block_1/spatial_reduction_1/reduction_type|global_avg|global_avg                         text_block_1/dense_block_1/num_layers|1         |1                                  text_block_1/dense_block_1/use_batchnorm|False     |False                              text_block_1/dense_block_1/dropout|0.5       |0.5                                text_block_1/dense_block_1/units_0|20        |20

应该使用哪一个自动库呢?

  • 如果你首选整洁、简单的界面和相对快速的结果,请使用auto-sklearn。可以与sklearn的自然集成,与常用的模型和方法一起使用。

  • 如果注重的是高精确度而不介意训练所需消耗时间较长,可以使用TPOT。可通过用树状结构代表管道而达成其强调的先进预处理方法,它还能额外输出最佳模型的Python代码。

  • 如果注重高精确度而不介意潜在的较长训练时间,则使用HyperOpt-sklearn,强调模型的超参数优化是否有成效取决于数据集和算法。

  • 如果你的问题涉及神经网络,特别是文本或图像形式的问题,请使用AutoKeras。其训练确实需要很长时间,但有大量的措施可以控制时间和搜索空间的大小。

想实现自动化,千万不要错过这四个库。

到此,相信大家对“数据科学家该了解的Python自动库有哪些”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI