SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据库API执行SQL并获取执行结果。
安装:
pip3 install SQLAlchemy
版本检查:
import sqlalchemy sqlalchemy.__version__
不同数据库配置:
根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作:
格式:'数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>[:<port>]/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...]
连接数据库:
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:a13896321z@127.0.0.1/school",encoding='utf-8',echo=True)
声明映射:
declaractive用来表示类与表的关系。
声明基类,将类映射到数据表,自定义数据表类必须继承这个基类。
from sqlalchemy.ext.declaractive import declaractive_base Base = declaractive_base()
创建表结构类:
一个表结构类必须包含一个__tablename__和primary_key的字段
字段的类型:
SmallInteger Integer BigInteger Float Numeric(precision=None, scale=None, decimal_return_scale=None, asdecimal=True) Boolean Enum Date DateTime Time Interval(native=True, second_precision=None, day_precision=None) LargeBinary(length=None) MatchType(create_constraint=True, name=None, _create_events=True) PickleType(protocol=4, pickler=None, comparator=None) SchemaType(name=None, schema=None, metadata=None, inherit_schema=False, quote=None, _create_events=True) String(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False) Text(length=None, collation=None, convert_unicode=False, unicode_error=None, _warn_on_bytestring=False) Unicode(length=None, **kwargs) # 常用的类型: 类型名 python类型 说明 Integer int 普通整数,32位 Float float 浮点数 String str 变长字符串 Text str 变长字符串,对较长字符串做了优化 Boolean bool 布尔值 PickleType 任何python对象 自动使用Pickle序列化
字段的选项:
Column( nullable=True, # 可以为空 autoincrement=True, # 数值自增 default='red' # 指定默认值 primary_key = True # 设为主键 ForeignKey = 'table_name.id' # 指定外键,ForeignKey需要导入 unique = True # 设定此字段键值唯一,不允许出现重复值。 )
建立sqlalchemy连接:
from sqlalchemy import create_engine engine = create_engine()
声明表结构:
class School(Base): __tablename__ = "school" # 这个才是表名 id = Column(Integer, primary_key = True) sch_name = Column(String(32)) sch_addr = Column(String(255)) sch_tel = Column(Integer) def __repr__(self): # 查询的时候显示的是值,需不是一个内存地址。 return "school name:{},tel:{}".format(self.sch_name,self.sch_tel)
动态添加表字段。
def add_filed(table_name,): for i in range(3): setattr(table_class,'Col'+str(i),(Column('Col'+str(i), String(50),comment='Col'+str(i)))) Base.metadata.create_all(engine)
创建表:
Base.metadata.create_all(engine) # 删除表 Base.metadata.drop_all(engine)
增加一条记录:
from sqlalchemy.orm import sessionmaker Session = sessionmaker(bind=engine) # 创建一个与数据库的会话,生成的对象是类 session = Session() # 实例化这个会话类 class AddRecord(object): # 交互添加记录类。 def __init__(self,*args): # self.table_name = table_name self.school_feild = {'sch_name':'学校名:','sch_addr':'学校地址:','sch_tel':'学校电话:'} def school(self): f = {} for k,v in self.school.items(): f[k] = input('{}'.format(v)).strip() return f # 返回一个字典 add = AddRecord() school_attr = add.school() # 获取输入的值 # 下面a1是创建一条记录 a1 = School(sch_name = school_attr[sch_name],sch_addr= school_attr[sch_addr],sch_tel = school_attr[sch_tel]) session.add(a1) # 把记录添加到数据库 session.commit() # 提交到数据库,最终对数据库更改。
表的参数__table_args__:
__table_args__:参数需要导入。
from sqlalchemy import UniqueConstraint, PrimaryKeyConstraint, Index
参数名 | 参数 | 作用 | 示例 |
UniqueConstraint('field1','feild2',..., name='') | field1~n:要联合唯一的字段名 name:设置联合的字段名 | 把多个字段建立一个联合唯一的限制 | __table_args__=( UniqueConstraint('ip','port',name='ip_port'), ) |
Index('field1','feild2',...,) | field1~n:字段名 | 把指定字段建立索引 | __table_args__=( Index('ip','port'), ) |
PrimeryKeyConstraint('field1','feild2',...,) | field1~n:字段名 | 设置多字段主键 | __table_args__=( PrimeryKeyConstraint('ip','port'), ) |
...更多参数待补充 |
增、查、改、删:
这四个操作都需要导入sessionmaker ,用sessionmaker创建一个会话,除了建库外,所有操作都在会话中完成。
from sqlalchemy.orm import sessionmaker
Session = sessionmaker()
session =Session()
增:
add(记录) | 记录:由表类生成的实例 | 增加一条记录 | d1=School(name='DL',addr='GJZ') session.add(d1) |
add_all(记录列表) | 记录列表:由表类生成的实例列表 | 同时增加多条记录 | d1=School(name='DL',addr='GJZ') d2=School(name='BJ',addr='HLG') session.add([d1,d2]) |
查:
这三个操作都需要用到query
query | 参数 | 作用 | |
query(table) | table:表名。
| 查询表中所有数据 以表结构__repr__中定义的格式显示 | session.query(table).all() |
query(table.field1,table.field2,……) | table:表名。 field:字段名,可多个。 | 显示指定字段,不以表结构__repr__格式输出 | session.query(table.id,table.name).all() |
结果显示的方法: | |||
all() | 显示所有结果,结果是一个列表 | session.query(table).all() | |
first() | 只显示第一个结果 | session.query(table).first() | |
one() | 如果没有获得结果或者返回了多个结果,则会产生一个 error 结果是一个实例类。 | a=session.query(table).filter(table.id==6).one() a.id#就可以查看id的值。 | |
scalar() | 干啥用的? 感觉和one一样。。。 | ||
count() | 计数 | session.query(table).count() | |
[m:n] | 切片,读取指定的结果和列表切片一样 | session.query(table)[:3] | |
offset(2) | 从第3条数据开始读 | session.query(table).offset(2).all() | |
limit(3) | 只显示前三条 | session.query(table).limit(3).all() | |
order_by | |||
desc | 降序 查询结果降序显示 | session.query(t).order_by(t.id.desc()).filter(t.id>3).all() | |
asc | 升序 查询结果升序显示 | session.query(t).order_by(t.id.asc()).filter(t.id>3).all() | |
query给表和字段重命名 | |||
lable() | 给字段重命名 调用时可以调用lable内的名字。 | a=session.query(table.filed.lable('other')).all() for i in a: print (i.other) | |
aliased | 给表重命名,需要导入 | from sqlalchemy.orm import aliased table_a = aliased(table) | |
query使用text执行SQL语句 text需要导入 |
|
from sqlalchemy import text | |
text('SQL') | SQL:SQL语句或SQL表达式或表的字段 | ||
在filter()方法中使用 | 指定过滤条件 | session.query(t).filter(text('id >2')).all() | |
在order_by()方法中使用 | 指定排序的字段 | session.query(t).order_by(text('id desc')).all() | |
在from_statement()方法中使用 | 运行完整的SQL语句 | session.query(t).from_statement(text( 'select * from talbe where id>2' )) | |
params(变量1=值1,变量2=值2...) | TEXT中的变量前面必须加冒号。 例:text('id = id') | 给text中的变量指定值。 | session.query(t).filter(text('id>:id')).params(id=2).all() 相当于text('id>2') |
query.filter 条件查询 支持所有SQL条件表达式(where部分) | |||
filter(表名.字段 == 值) | 表名.字段:固定格式,不能省略表名。 ==:条件表达式,==,>=,<=,>,<,!= | 根据条件查询数据 | session.query(table).filter(table.id <2).all() |
filter(表名.字段.关键字(值) ) | 表名.字段:固定格式,不能省略表名。 关键字:in_,like,notin_,notlike,between,contains,is_,notis 值:可以是列表,元组,字符串,数字 字符串:可以用通配符%,例:"%a%",单字符通配 _ | 1在列表里 2没在列表里 3匹配字符串 4不匹配字符串 5匹配字符串,不区分大小写 6不匹配字符串,不区分大小写 7在2和6之间,含2和6 8包含字符a 9field是真 10field是不是真 11匹配索引,匹配表报错 | 1-filter(table.field.in_([1,2,'1'])) 2-filter(table.field.notin_([1,2,'1'])) 3-filter(table.field.like('%a%')) 4-filter(table.field.notlike('%a%')) 5-filter(table.field.ilike('%a%')) 6-filter(table.field.notilike('%a%')) 7-filter(table.field.between(2,6)) 8-filter(table.field.contains('a')) 9-filter(table.field.is_(True)) 10-filter(table.field.notis(True)) 11-filter(table.field.match('dage')) |
fileter多条件查询,or_,and_ | |||
filter(逻辑运算符(条件表达式1,条件表达式2,......)) | 逻辑运算符:and_,or_ | 需要从sqlalchemy导入 from sqlalchmy import and_,or_ | filter(and_(table.id >1,table.id<6)) filter(or_(table.id>1,table.name=='dage')) |
func写在query方法里,可以和字段一起显示。 | |||
func.参数 | avg:求平均值 count:统计数量 sum:求和 max:最大 min:最小 | 对分组和字段进行简单的数学运算。 如果不符合逻辑会提示错误“Inaggregated query without GROUP BY” | session.query(table_b.name ,func.count(table_b.age), func.min(table_b.age)).group_by(table_b.name).all() 这一句是对name分组,显示name,显示每个name的个数,和每组最小的age |
改:
有两种方法: | |||
query.fileter(条件).update(值) | 值:字典格式。{表名.字段:值} | 更新所有filter筛选的记录的指定字段 | session.query(table_b).filter(table_b.name == 'erge').update({table_b.score : 60}) |
实例.字段=值 | 先创建一个查询结果的实例 再通过实例改字段的值 提交更改 | sql=seesion.query(table_b).filter(table_b.id ==3).first() sql.name = 'new name' session.commit() | |
实例.字段=值 批量更新 | sql=seesion.query(table_b).filter(table_b.age ==20).all() for i in range(len(sql)): sql(i).score= 100 session.commit() | ||
update(值,synchronize_session=False) | synchronize_session=False立即提交,更新的时候速度更快,同时批量更新时不加此参数报错 | session.query(table_b).filter(table_b.name == 'erge').update({table_b.score : 60},synchronize_session =False) | |
user = User(id=1, name='通过主键改内容') session.merge(user) | merge的作用是合并,查找primary key是否一致,一致则合并,不一致则新建 |
删:
delete() | qurey后面加limit.all,first,等方法时, 不能直接加delete() 需要使用for删除。 | sql1 = session.query(table_b).filter(and_(table_b.name == 'dage', table_b.age == 19)).delete() 或者: sql1 = session.query(table_b).filter(and_(table_b.name == 'dage', table_b.age == 19).first() sql1.delete() | |
in_查询的结果,删除会报错 | 错误提示: sqlalchemy.exc.InvalidRequestError: Could not evaluate current criteria in Python. Specify 'fetch' or False for the synchronize_session parameter | 解决方法: 在delete中,添加synchronize_session=False,含义是同步删除。 delete(synchronize_session=False) | sql1 = session.query(table_b).filter(table_b.name.in_('dage', 'erge')).delete(synchronize_session=False) |
删除指定条数 | 删除d开头的前三条记录 | sql1 = session.query(table_b).filter(table_b.name.like('d%')).limit(3).all() for i in sql1: session.delete(i) | |
一个基本表的创建与操作:
from sqlalchemy import create_engine, ForeignKey, Table, Column, String, Integer, Boolean, Enum
from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy.ext.declarative import declarative_base mysql_name = 'david' mysql_pw = 'Yaotiao&shunv666' mysql_server = '192.168.2.120' database_name = 'test' # 1、连接数据库 engine = create_engine("mysql+pymysql://{name}:{pw}@{server}/{database}". format(mysql_name,mysql_pw,mysql_server,database_name), encoding ='utf-8' ) # 2、生成ORM基类 Base = declarative_base() # 3、继承基类,定义表结构 class Product(Base): # 创建orm对象 __tablename__ = 'products' # 数据表名 id = Column(Integer, primary_key = True) # 字段,设为主键,默认不用赋值,此字段会自增 name = Column(String(32)) price = Column(Integer) def __repr__(self): # 打印查询结果实例显示结果,不加此项显示的是类的内存地址 return "name:{},price:{}".format(self.name,self.price) # 4、创建数据表 Base.metadata.create_all(engine) # 在数据库中创建表,已存在则不创建 # 5、添加多条数据 product1 = Product(name = '华为100', price = 999) # 创建两个实例 product2 = Product(name = '华为400', price = 1999) session.add_all([product1,product2 ]) # add_all把实例列表添加到数据库 # 6、添加单条数据 product = Product(name = '一条', price = 9999) session.add(product) # 7、查询数据 query_data = session.query(Product).all() # 查所有,如果不加__repr__,结果是内存地址列表,使用for查看 for i in query_data: # 查看结果 print (i.id,i.name,i.price) # 8、修改一项数据 query_data = session.query(Product).filter(Product.name=='一条').first() query_data.name = 'yitiao' # 只改name一个数据 # 9、批量更新:把所有华为开头的产品价格改成10000 session.query(Product).filter(Product.name.like('华为%')).update({Product.price:10000},synchronize_session =False) # 10、通过主键改内容merge: update_name = Product(id=3,price=3651) session.merge(update_name) # id 和 name不变,只修改了价格price = 3651 # 11、删除一条数据:把华为开头的价格最高的一条数据删掉 del_product = session.query(Product).fileter(Product.price.like('华为%'))).order_by(Product.price.desc()).first() session.delete(del_product) # 12、删除所有符合条件的数据: session.query(Product).filter(Product.name.like('华为%')).delete(synchronize_session = False)
问题集:https://blog.51cto.com/yishi/2335554
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。