这篇文章主要介绍“python内置的数据库是什么”,在日常操作中,相信很多人在python内置的数据库是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python内置的数据库是什么”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
输入与使用
当我们说“内置”时,这意味着你甚至不需要运行pip install来获取库。只需通过以下方式导入:
import sqlite3 as sl
创建到数据库的连接
不要为驱动程序、连接字符串等烦恼。可以创建一个SQLite数据库,并拥有一个简单的连接对象:
con = sl.connect('my-test.db')
运行这行代码之后,我们已经创建了数据库并连接到它。我们要求Python自动连接现有的数据库,因此它不是空的。否则,我们可以使用完全相同的代码连接到现有数据库。
创建表
然后创建一个表:
with con: con.execute(""" CREATE TABLE USER ( id INTEGER NOT NULL PRIMARYKEY AUTOINCREMENT, name TEXT, age INTEGER ); """)
在这个用户表中添加三列。正如你所看到的,SQLite确实是轻量级的,但是它支持常规RDBMS应该具有的所有基本特性,例如数据类型、可为null、主键和自动递增。运行这段代码之后就已经创建了一个表,尽管它什么也不输出。
插入记录
让我们在刚刚创建的USER表中插入一些记录,这也可以证明我们确实创建了它。假设要一次性插入多个条目。Python中的SQLite可以轻松实现这一点。
sql = 'INSERT INTO USER (id, name, age) values(?,?, ?)' data = [ (1, 'Alice', 21), (2, 'Bob', 22), (3, 'Chris', 23) ]
我们需要用问号作为占位符来定义SQL语句。然后,创建一些要插入的示例数据。通过连接对象,插入这些示例行。
with con: con.executemany(sql, data)
运行代码之后,没有任何提示,证明我们成功了。
查询表
现在,是时候验证所做的一切了。查询表以获取样本行。
with con: data = con.execute("SELECT *FROM USER WHERE age <= 22") for row in data: print(row)
另外,尽管SQLite是轻量级的,但是作为一个广泛使用的数据库,大多数SQL客户端软件都支持使用它。我使用最多的是DBeaver。
从SQL客户端(DBeaver)连接到SQLite数据库
因为我用的是googlecolab,所以要下载- my-test.db测试数据库文件到本地计算机。在本例中,如果在本地计算机上运行Python,则可以使用SQL客户机直接连接到数据库文件。
在DBeaver中,创建一个新连接并选择SQLite作为DB type。
然后,浏览到DB文件。
现在,可以在数据库上运行任何SQL查询。它与其他常规关系数据库没有什么不同。
与Pandas无缝融合
事实上,作为Python的一个内置特性,SQLite还可以与Pandas数据帧无缝集成。
定义一个数据帧:
df_skill = pd.DataFrame({ 'user_id': [1,1,2,2,3,3,3], 'skill': ['Network Security','Algorithm Development', 'Network Security', 'Java', 'Python', 'Data Science','Machine Learning'] })
然后,可以简单地调用数据帧的to_sql()方法将其保存到数据库中。
df_skill.to_sql('SKILL', con)
就这样,我们甚至不需要预先创建表,列的数据类型和长度都会被推断出来。当然,如果你想的话,仍然可以事先定义它。
然后,假设我们要连接表USER和SKILL,并将结果读入Pandas数据框。它也是无缝的。
df = pd.read_sql(''' SELECT s.user_id, u.name, u.age,s.skill FROM USER u LEFT JOIN SKILL s ON u.id= s.user_id ''', con)
让我们把结果写到一个名为USER_SKILL的新表中:
df.to_sql('USER_SKILL', con)
然后,还可以使用SQL客户机检索表。
到此,关于“python内置的数据库是什么”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注亿速云网站,小编会继续努力为大家带来更多实用的文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。