这篇文章将为大家详细讲解有关Python中怎么PDF文件提取数据,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。
示例:使用Python从PDF文件中提取一个表格
a) 将表复制到Excel并保存为table_1_raw.csv
数据以一维格式存储,必须进行重塑、清理和转换。
b) 导入必要的库
import pandas as pd import numpy as np
c) 导入原始数据,重新定义数据
df=pd.read_csv("table_1_raw.csv", header=None) df.values.shape df2=pd.DataFrame(df.values.reshape(25,10)) column_names=df2[0:1].values[0] df3=df2[1:] df3.columns = df2[0:1].values[0] df3.head()
d) 使用字符串处理工具进行数据纠缠
我们从上面的表格中注意到,x5、x6和x7列是用百分比表示的,所以我们需要去掉percent(%)符号:
df4['x5']=list(map(lambda x: x[:-1], df4['x5'].values)) df4['x6']=list(map(lambda x: x[:-1], df4['x6'].values)) df4['x7']=list(map(lambda x: x[:-1], df4['x7'].values))
e) 将数据转换为数字形式
我们注意到列x5、x6和x7的列值数据类型为string,因此我们需要将它们转换为数值数据,如下所示:
df4['x5']=[float(x) for x in df4['x5'].values] df4['x6']=[float(x) for x in df4['x6'].values] df4['x7']=[float(x) for x in df4['x7'].values]
f) 查看转换数据的最终形式
df4.head(n=5)
g) 导出最终数据到一个csv文件
df4.to_csv('table_1_final.csv',index=False)
关于Python中怎么PDF文件提取数据就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。