温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

怎么用Python构造决策树

发布时间:2021-08-21 11:45:04 来源:亿速云 阅读:111 作者:chen 栏目:编程语言

本篇内容介绍了“怎么用Python构造决策树”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

起步

本章介绍如何不利用第三方库,仅用python自带的标准库来构造一个决策树。

熵的计算公式:

怎么用Python构造决策树

对应的 python 代码:

怎么用Python构造决策树

条件熵的计算

根据计算方法:

怎么用Python构造决策树

对应的 python 代码:

怎么用Python构造决策树

其中参数 future_list 是某一特征向量组成的列表,result_list 是 label 列表。

信息增益

根据信息增益的计算方法:

怎么用Python构造决策树

对应的python代码:

怎么用Python构造决策树..

定义决策树的节点

作为树的节点,要有左子树和右子树是必不可少的,除此之外还需要其他信息:

怎么用Python构造决策树

树的节点会有两种状态,叶子节点中 results 属性将保持当前的分类结果。非叶子节点中, col 保存着该节点计算的特征索引,根据这个索引来创建左右子树。

has_calc_index 属性表示在到达此节点时,已经计算过的特征索引。特征索引的数据集上表现是列的形式,如数据集(不包含结果集):

怎么用Python构造决策树

有三条数据,三个特征,那么***个特征对应了***列 [1, 0, 0] ,它的索引是 0 。

递归的停止条件

本章将构造出完整的决策树,所以递归的停止条件是所有待分析的训练集都属于同一类:

怎么用Python构造决策树

从训练集中筛选***的特征

怎么用Python构造决策树

因此计算节点就是调用 best_index = choose_best_future(node.data_set, node.labels, node.has_calc_index) 来获取***的信息增益的特征索引。

构造决策树

决策树中需要一个属性来指向树的根节点,以及特征数量。不需要保存训练集和结果集,因为这部分信息是保存在树的节点中的。

怎么用Python构造决策树

创建决策树

这里需要递归来创建决策树:

怎么用Python构造决策树

怎么用Python构造决策树

根据信息增益的特征索引将训练集再划分为左右两个子树。

训练函数

也就是要有一个 fit 函数:

怎么用Python构造决策树

清理训练集

训练后,树节点中数据集和结果集等就没必要的,该模型只要 col 和 result 就可以了:

怎么用Python构造决策树

预测函数

提供一个预测函数:

怎么用Python构造决策树

测试

数据集使用前面《应用篇》中的向量化的训练集:

怎么用Python构造决策树

“怎么用Python构造决策树”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI