温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Kafka中的术语设计详解

发布时间:2021-09-10 14:58:20 来源:亿速云 阅读:119 作者:chen 栏目:开发技术

本篇内容介绍了“Kafka中的术语设计详解”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!


Kafka 中的术语

broker:中间的kafka cluster,存储消息,是由多个server组成的集群。

topic:kafka给消息提供的分类方式。broker用来存储不同topic的消息数据。

producer:往broker中某个topic里面生产数据。

consumer:从broker中某个topic获取数据。

Kafka 中的术语设计:

1、Broker

中间的kafka cluster,存储消息,是由多个server组成的集群。

Kafka中的术语设计详解

2、topic与消息

kafka将所有消息组织成多个topic的形式存储,而每个topic又可以拆分成多个partition,每个partition又由一个一个消息组成。每个消息都被标识了一个递增序列号代表其进来的先后顺序,并按顺序存储在partition中。

Kafka中的术语设计详解

这样,消息就以一个个id的方式,组织起来。

producer选择一个topic,生产消息,消息会通过分配策略append到某个partition末尾。

consumer选择一个topic,通过id指定从哪个位置开始消费消息。消费完成之后保留id,下次可以从这个位置开始继续消费,也可以从其他任意位置开始消费。

上面的id在kafka中称为offset,这种组织和处理策略提供了如下好处:

消费者可以根据需求,灵活指定offset消费。

保证了消息不变性,为并发消费提供了线程安全的保证。每个consumer都保留自己的offset,互相之间不干扰,不存在线程安全问题。

消息访问的并行高效性。每个topic中的消息被组织成多个partition,partition均匀分配到集群server中。生产、消费消息的时候,会被路由到指定partition,减少竞争,增加了程序的并行能力。

增加消息系统的可伸缩性。每个topic中保留的消息可能非常庞大,通过partition将消息切分成多个子消息,并通过负责均衡策略将partition分配到不同server。这样当机器负载满的时候,通过扩容可以将消息重新均匀分配。

保证消息可靠性。消息消费完成之后不会删除,可以通过重置offset重新消费,保证了消息不会丢失。

灵活的持久化策略。可以通过指定时间段(如最近一天)来保存消息,节省broker存储空间。

备份高可用性。消息以partition为单位分配到多个server,并以partition为单位进行备份。备份策略为:1个leader和N个followers,leader接受读写请求,followers被动复制leader。leader和followers会在集群中打散,保证partition高可用。

3、Partitions

每个Topics划分为一个或者多个Partition,并且Partition中的每条消息都被标记了一个sequential id  ,也就是offset,并且存储的数据是可配置存储时间的

Kafka中的术语设计详解

4、producer

producer生产消息需要如下参数:

topic:往哪个topic生产消息。

partition:往哪个partition生产消息。

key:根据该key将消息分区到不同partition。

message:消息。

Kafka中的术语设计详解

5、consumer

传统消息系统有两种模式:

队列

发布订阅

kafka通过consumer group将两种模式统一处理:每个consumer将自己标记consumer group名称,之后系统会将consumer  group按名称分组,将消息复制并分发给所有分组,每个分组只有一个consumer能消费这条消息。如下图:

Kafka中的术语设计详解

于是推理出两个极端情况:

  • 当所有consumer的consumer group相同时,系统变成队列模式

  • 当每个consumer的consumer group都不相同时,系统变成发布订阅

注意:

1、Consumer Groups 提供了topics和partitions的隔离, 如上图Consumer Group  A中的consumer-C2挂掉,consumer-C1会接收P1,P2,即一个consumer  Group中有其他consumer挂掉后能够重新平衡。如下图:

Kafka中的术语设计详解

2、多consumer并发消费消息时,容易导致消息乱序,通过限制消费者为同步,可以保证消息有序,但是这大大降低了程序的并发性。

kafka通过partition的概念,保证了partition内消息有序性,缓解了上面的问题。partition内消息会复制分发给所有分组,每个分组只有一个consumer能消费这条消息。这个语义保证了某个分组消费某个分区的消息,是同步而非并发的。如果一个topic只有一个partition,那么这个topic并发消费有序,否则只是单个partition有序。

一般消息系统,consumer存在两种消费模型:

push:优势在于消息实时性高。劣势在于没有考虑consumer消费能力和饱和情况,容易导致producer压垮consumer。

pull:优势在可以控制消费速度和消费数量,保证consumer不会出现饱和。劣势在于当没有数据,会出现空轮询,消耗cpu。

kafka采用pull,并采用可配置化参数保证当存在数据并且数据量达到一定量的时候,consumer端才进行pull操作,否则一直处于block状态。kakfa采用整数值consumer  position来记录单个分区的消费状态,并且单个分区单个消息只能被consumer  group内的一个consumer消费,维护简单开销小。消费完成,broker收到确认,position指向下次消费的offset。由于消息不会删除,在完成消费,position更新之后,consumer依然可以重置offset重新消费历史消息。

消息发送语义

producer视角

消息最多发送一次:producer异步发送消息,或者同步发消息但重试次数为0。

消息至少发送一次:producer同步发送消息,失败、超时都会重试。

消息发且仅发一次:后续版本支持。

consumer视角

消息最多消费一次:consumer先读取消息,再确认position,***处理消息。

消息至少消费一次:consumer先读取消息,再处理消息,***确认position。

消息消费且仅消费一次。

注意:

如果消息处理后的输出端(如db)能保证消息更新幂等性,则多次消费也能保证exactly once语义。

如果输出端能支持两阶段提交协议,则能保证确认position和处理输出消息同时成功或者同时失败。

在消息处理的输出端存储更新后的position,保证了确认position和处理输出消息的原子性(简单、通用)。

可用性

在kafka中,正常情况下所有node处于同步中状态,当某个node处于非同步中状态,也就意味着整个系统出问题,需要做容错处理。

同步中代表了:

该node与zookeeper能连通。

该node如果是follower,那么consumer position与leader不能差距太大(差额可配置)。

某个分区内同步中的node组成一个集合,即该分区的ISR。

kafka通过两个手段容错:

数据备份:以partition为单位备份,副本数可设置。当副本数为N时,代表1个leader,N-1个followers,followers可以视为leader的consumer,拉取leader的消息,append到自己的系统中

failover:

1. 当leader处于非同步中时,系统从followers中选举新leader

2. 当某个follower状态变为非同步中时,leader会将此follower剔除ISR,当此follower恢复并完成数据同步之后再次进入  ISR。

另外,kafka有个保障:当producer生产消息时,只有当消息被所有ISR确认时,才表示该消息提交成功。只有提交成功的消息,才能被consumer消费。

因此,当有N个副本时,N个副本都在ISR中,N-1个副本都出现异常时,系统依然能提供服务。

假设N副本全挂了,node恢复后会面临同步数据的过程,这期间ISR中没有node,会导致该分区服务不可用。kafka采用一种降级措施来处理:选举***个恢复的node作为leader提供服务,以它的数据为基准,这个措施被称为脏leader选举。由于leader是主要提供服务的,kafka  broker将多个partition的leader均分在不同的server上以均摊风险。每个parition都有leader,如果在每个partition内运行选主进程,那么会导致产生非常多选主进程。kakfa采用一种轻量级的方式:从broker集群中选出一个作为controller,这个controller监控挂掉的broker,为上面的分区批量选主。

一致性

上面的方案保证了数据高可用,有时高可用是体现在对一致性的牺牲上。如果希望达到强一致性,可以采取如下措施:

禁用脏leader选举,ISR没有node时,宁可不提供服务也不要未完全同步的node。

设置最小ISR数量min_isr,保证消息至少要被min_isr个node确认才能提交。

持久化

基于以下几点事实,kafka重度依赖磁盘而非内存来存储消息。

硬盘便宜,内存贵

顺序读+预读取操作,能提高缓存***率

操作系统利用富余的内存作为pagecache,配合预读取(read-ahead)+写回(write-back)技术,从cache读数据,写到cache就返回(操作系统后台flush),提高用户进程响应速度

java对象实际大小比理想大小要大,使得将消息存到内存成本很高

当堆内存占用不断增加时,gc抖动较大

基于文件顺序读写的设计思路,代码编写简单

在持久化数据结构的选择上,kafka采用了queue而不是Btree

kafka只有简单的根据offset读和append操作,所以基于queue操作的时间复杂度为O(1),而基于Btree操作的时间复杂度为O(logN)

在大量文件读写的时候,基于queue的read和append只需要一次磁盘寻址,而Btree则会涉及多次。磁盘寻址过程极大降低了读写性能

“Kafka中的术语设计详解”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI