温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

AudioTrack API怎么使用

发布时间:2021-12-18 16:51:10 来源:亿速云 阅读:165 作者:iii 栏目:移动开发

这篇文章主要讲解了“AudioTrack API怎么使用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“AudioTrack API怎么使用”吧!

一 目的

本文的目的是通过从Audio系统来分析Android的代码,包括Android自定义的那套机制和一些常见类的使用,比如Thread,MemoryBase等。

分析的流程是:

l         先从API层对应的某个类开始,用户层先要有一个简单的使用流程。

l         根据这个流程,一步步进入到JNI,服务层。在此过程中,碰到不熟悉或者***次见到的类或者方法,都会解释。也就是深度优先的方法。

1.1 分析工具

分析工具很简单,就是sourceinsight和android的API doc文档。当然还得有android的源代码。我这里是基于froyo的源码。

注意,froyo源码太多了,不要一股脑的加入到sourceinsight中,只要把framwork目录下的源码加进去就可以了,后续如要用的话,再加别的目录。

二 Audio系统

先看看Audio里边有哪些东西?通过Android的SDK文档,发现主要有三个:

l         AudioManager:这个主要是用来管理Audio系统的

l         AudioTrack:这个主要是用来播放声音的

l         AudioRecord:这个主要是用来录音的

其中AudioManager的理解需要考虑整个系统上声音的策略问题,例如来电话铃声,短信铃声等,主要是策略上的问题。一般看来,最简单的就是播放声音了。所以我们打算从AudioTrack开始分析。

三 AudioTrack(JAVA层)

3.1 AudioTrack API的使用例子

先看看使用例子,然后跟进去分析。至于AudioTrack的其他使用方法和说明,需要大家自己去看API文档了。

//根据采样率,采样精度,单双声道来得到frame的大小。  int bufsize = AudioTrack.getMinBufferSize(8000,//每秒8K个点  AudioFormat.CHANNEL_CONFIGURATION_STEREO,//双声道  AudioFormat.ENCODING_PCM_16BIT);//一个采样点16比特-2个字节  //注意,按照数字音频的知识,这个算出来的是一秒钟buffer的大小。  //创建AudioTrack  AudioTrack trackplayer = new AudioTrack(AudioManager.STREAM_MUSIC, 8000,  AudioFormat.CHANNEL_CONFIGURATION_ STEREO,  AudioFormat.ENCODING_PCM_16BIT,  bufsize,  AudioTrack.MODE_STREAM);//   trackplayer.play() ;//开始  trackplayer.write(bytes_pkg, 0, bytes_pkg.length) ;//往track中写数据  ….  trackplayer.stop();//停止播放  trackplayer.release();//释放底层资源。

这里需要解释下两个东西:

1 AudioTrack.MODE_STREAM的意思:

AudioTrack中有MODE_STATIC和MODE_STREAM两种分类。STREAM的意思是由用户在应用程序通过write方式把数据一次一次得写到audiotrack中。这个和我们在socket中发送数据一样,应用层从某个地方获取数据,例如通过编解码得到PCM数据,然后write到audiotrack。

这种方式的坏处就是总是在JAVA层和Native层交互,效率损失较大。

而STATIC的意思是一开始创建的时候,就把音频数据放到一个固定的buffer,然后直接传给audiotrack,后续就不用一次次得write了。AudioTrack会自己播放这个buffer中的数据。

这种方法对于铃声等内存占用较小,延时要求较高的声音来说很适用。

2 StreamType

这个在构造AudioTrack的***个参数中使用。这个参数和Android中的AudioManager有关系,涉及到手机上的音频管理策略。

Android将系统的声音分为以下几类常见的(未写全):

l         STREAM_ALARM:警告声

l         STREAM_MUSCI:音乐声,例如music等

l         STREAM_RING:铃声

l         STREAM_SYSTEM:系统声音

l         STREAM_VOCIE_CALL:电话声音

为什么要分这么多呢?以前在台式机上开发的时候很少知道有这么多的声音类型,不过仔细思考下,发现这样做是有道理的。例如你在听music的时候接到电话,这个时候music播放肯定会停止,此时你只能听到电话,如果你调节音量的话,这个调节肯定只对电话起作用。当电话打完了,再回到music,你肯定不用再调节音量了。

其实系统将这几种声音的数据分开管理,所以,这个参数对AudioTrack来说,它的含义就是告诉系统,我现在想使用的是哪种类型的声音,这样系统就可以对应管理他们了。

3.2 分析之getMinBufferSize

AudioTrack的例子就几个函数。先看看***个函数:

AudioTrack.getMinBufferSize(8000,//每秒8K个点  AudioFormat.CHANNEL_CONFIGURATION_STEREO,//双声道  AudioFormat.ENCODING_PCM_16BIT);  ----->AudioTrack.JAVA  //注意,这是个static函数  static public int getMinBufferSize(int sampleRateInHz, int channelConfig, int audioFormat) {          int channelCount = 0;          switch(channelConfig) {          case AudioFormat.CHANNEL_OUT_MONO:          case AudioFormat.CHANNEL_CONFIGURATION_MONO:              channelCount = 1;              break;          case AudioFormat.CHANNEL_OUT_STEREO:          case AudioFormat.CHANNEL_CONFIGURATION_STEREO:              channelCount = 2;--->看到了吧,外面名字搞得这么酷,其实就是指声道数              break;          default:              loge("getMinBufferSize(): Invalid channel configuration.");              return AudioTrack.ERROR_BAD_VALUE;          }      //目前只支持PCM8和PCM16精度的音频             if ((audioFormat != AudioFormat.ENCODING_PCM_16BIT)              && (audioFormat != AudioFormat.ENCODING_PCM_8BIT)) {              loge("getMinBufferSize(): Invalid audio format.");              return AudioTrack.ERROR_BAD_VALUE;          }        //ft,对采样频率也有要求,太低或太高都不行,人耳分辨率在20HZ到40KHZ之间          if ( (sampleRateInHz < 4000) || (sampleRateInHz > 48000) ) {              loge("getMinBufferSize(): " + sampleRateInHz +"Hz is not a supported sample rate.");              return AudioTrack.ERROR_BAD_VALUE;          }         //调用native函数,够烦的,什么事情都搞到JNI层去。          int size = native_get_min_buff_size(sampleRateInHz, channelCount, audioFormat);          if ((size == -1) || (size == 0)) {              loge("getMinBufferSize(): error querying hardware");              return AudioTrack.ERROR;          }          else {              return size;          }  native_get_min_buff_size--->在framework/base/core/jni/android_media_track.cpp中实现。(不了解JNI的一定要学习下,否则只能在JAVA层搞,太狭隘了。)最终对应到函数  static jint android_media_AudioTrack_get_min_buff_size(JNIEnv *env,  jobject thiz,  jint sampleRateInHertz, jint nbChannels, jint audioFormat)  {//注意我们传入的参数是:  //sampleRateInHertz = 8000  //nbChannels = 2;  //audioFormat = AudioFormat.ENCODING_PCM_16BIT      int afSamplingRate;      int afFrameCount;      uint32_t afLatency;  //下面涉及到AudioSystem,这里先不解释了,  //反正知道从AudioSystem那查询了一些信息      if (AudioSystem::getOutputSamplingRate(&afSamplingRate) != NO_ERROR) {          return -1;      }      if (AudioSystem::getOutputFrameCount(&afFrameCount) != NO_ERROR) {          return -1;      }           if (AudioSystem::getOutputLatency(&afLatency) != NO_ERROR) {          return -1;      }  //音频中最常见的是frame这个单位,什么意思?经过多方查找,***还是在ALSA的wiki中  //找到解释了。一个frame就是1个采样点的字节数*声道。为啥搞个frame出来?因为对于多//声道的话,用1个采样点的字节数表示不全,因为播放的时候肯定是多个声道的数据都要播出来//才行。所以为了方便,就说1秒钟有多少个frame,这样就能抛开声道数,把意思表示全了。      // Ensure that buffer depth covers at least audio hardware latency      uint32_t minBufCount = afLatency / ((1000 * afFrameCount)/afSamplingRate);      if (minBufCount < 2) minBufCount = 2;  uint32_t minFrameCount =   (afFrameCount*sampleRateInHertz*minBufCount)/afSamplingRate;  //下面根据最小的framecount计算最小的buffersize     int minBuffSize = minFrameCount              * (audioFormat == javaAudioTrackFields.PCM16 ? 2 : 1)              * nbChannels;      return minBuffSize;  }

getMinBufSize函数完了后,我们得到一个满足最小要求的缓冲区大小。这样用户分配缓冲区就有了依据。下面就需要创建AudioTrack对象了

3.3 分析之new AudioTrack

先看看调用函数:

AudioTrack trackplayer = new AudioTrack(  AudioManager.STREAM_MUSIC,  8000,  AudioFormat.CHANNEL_CONFIGURATION_ STEREO,  AudioFormat.ENCODING_PCM_16BIT,  bufsize,  AudioTrack.MODE_STREAM);//  其实现代码在AudioTrack.java中。  public AudioTrack(int streamType, int sampleRateInHz, int channelConfig, int audioFormat,              int bufferSizeInBytes, int mode)      throws IllegalArgumentException {          mState = STATE_UNINITIALIZED;                   // 获得主线程的Looper,这个在MediaScanner分析中已经讲过了          if ((mInitializationLooper = Looper.myLooper()) == null) {              mInitializationLooper = Looper.getMainLooper();          }      //检查参数是否合法之类的,可以不管它          audioParamCheck(streamType, sampleRateInHz, channelConfig, audioFormat, mode);     //我是用getMinBufsize得到的大小,总不会出错吧?          audioBuffSizeCheck(bufferSizeInBytes);             // 调用native层的native_setup,把自己的WeakReference传进去了       //不了解JAVA WeakReference的可以上网自己查一下,很简单的          int initResult = native_setup(new WeakReference<AudioTrack>(this),                  mStreamType, 这个值是AudioManager.STREAM_MUSIC   mSampleRate, 这个值是8000  mChannels, 这个值是2  mAudioFormat,这个值是AudioFormat.ENCODING_PCM_16BIT                  mNativeBufferSizeInBytes, //这个是刚才getMinBufSize得到的  mDataLoadMode);DataLoadMode是MODE_STREAM           ....  }

上面函数调用最终进入了JNI层android_media_AudioTrack.cpp下面的函数

static int  android_media_AudioTrack_native_setup(JNIEnv *env, jobject thiz, jobject weak_this,          jint streamType, jint sampleRateInHertz, jint channels,          jint audioFormat, jint buffSizeInBytes, jint memoryMode)  {      int afSampleRate;      int afFrameCount;

下面又要调用一堆东西,烦不烦呐?具体干什么用的,以后分析到AudioSystem再说。

 AudioSystem::getOutputFrameCount(&afFrameCount, streamType);     AudioSystem::getOutputSamplingRate(&afSampleRate, streamType);        AudioSystem::isOutputChannel(channels);      popCount是统计一个整数中有多少位为1的算法  int nbChannels = AudioSystem::popCount(channels);           if (streamType == javaAudioTrackFields.STREAM_MUSIC) {          atStreamType = AudioSystem::MUSIC;      }     int bytesPerSample = audioFormat == javaAudioTrackFields.PCM16 ? 2 : 1;      int format = audioFormat == javaAudioTrackFields.PCM16 ?              AudioSystem::PCM_16_BIT : AudioSystem::PCM_8_BIT;      int frameCount = buffSizeInBytes / (nbChannels * bytesPerSample);  //上面是根据Buffer大小和一个Frame大小来计算帧数的。  // AudioTrackJniStorage,就是一个保存一些数据的地方,这  //里边有一些有用的知识,下面再详细解释      AudioTrackJniStorage* lpJniStorage = new AudioTrackJniStorage();            jclass clazz = env->GetObjectClass(thiz);        lpJniStorage->mCallbackData.audioTrack_class = (jclass)env->NewGlobalRef(clazz);       lpJniStorage->mCallbackData.audioTrack_ref = env->NewGlobalRef(weak_this);       lpJniStorage->mStreamType = atStreamType;         //创建真正的AudioTrack对象      AudioTrack* lpTrack = new AudioTrack();         if (memoryMode == javaAudioTrackFields.MODE_STREAM) {    //如果是STREAM流方式的话,把刚才那些参数设进去         lpTrack->set(              atStreamType,// stream type              sampleRateInHertz,              format,// word length, PCM              channels,              frameCount,              0,// flags              audioCallback,  &(lpJniStorage->mCallbackData),//callback, callback data (user)              0,// notificationFrames == 0 since not using EVENT_MORE_DATA to feed the AudioTrack              0,// 共享内存,STREAM模式需要用户一次次写,所以就不用共享内存了              true);// thread can call Java                   } else if (memoryMode == javaAudioTrackFields.MODE_STATIC) {           //如果是static模式,需要用户一次性把数据写进去,然后         //再由audioTrack自己去把数据读出来,所以需要一个共享内存  //这里的共享内存是指C++AudioTrack和AudioFlinger之间共享的内容   //因为真正播放的工作是由AudioFlinger来完成的。            lpJniStorage->allocSharedMem(buffSizeInBytes);            lpTrack->set(              atStreamType,// stream type              sampleRateInHertz,              format,// word length, PCM              channels,              frameCount,              0,// flags              audioCallback,  &(lpJniStorage->mCallbackData),//callback, callback data (user));              0,// notificationFrames == 0 since not using EVENT_MORE_DATA to feed the AudioTrack              lpJniStorage->mMemBase,// shared mem              true);// thread can call Java      }         if (lpTrack->initCheck() != NO_ERROR) {          LOGE("Error initializing AudioTrack");          goto native_init_failure;      }  //又来这一招,把C++AudioTrack对象指针保存到JAVA对象的一个变量中  //这样,Native层的AudioTrack对象就和JAVA层的AudioTrack对象关联起来了。      env->SetIntField(thiz, javaAudioTrackFields.nativeTrackInJavaObj, (int)lpTrack);      env->SetIntField(thiz, javaAudioTrackFields.jniData, (int)lpJniStorage);    }

1 AudioTrackJniStorage详解

这个类其实就是一个辅助类,但是里边有一些知识很重要,尤其是Android封装的一套共享内存的机制。这里一并讲解,把这块搞清楚了,我们就能轻松得在两个进程间进行内存的拷贝。

AudioTrackJniStorage的代码很简单。

struct audiotrack_callback_cookie {      jclass      audioTrack_class;      jobject     audioTrack_ref;   };  cookie其实就是把JAVA中的一些东西保存了下,没什么特别的意义  class AudioTrackJniStorage {      public:          sp<MemoryHeapBase>         mMemHeap;//这两个Memory很重要          sp<MemoryBase>             mMemBase;          audiotrack_callback_cookie mCallbackData;          int                        mStreamType;           bool allocSharedMem(int sizeInBytes) {          mMemHeap = new MemoryHeapBase(sizeInBytes, 0, "AudioTrack Heap Base");          mMemBase = new MemoryBase(mMemHeap, 0, sizeInBytes);  //注意用法,先弄一个HeapBase,再把HeapBase传入到MemoryBase中去。          return true;      }  };

2 MemoryHeapBase

MemroyHeapBase也是Android搞的一套基于Binder机制的对内存操作的类。既然是Binder机制,那么肯定有一个服务端(Bnxxx),一个代理端Bpxxx。看看MemoryHeapBase定义:

class MemoryHeapBase : public virtual BnMemoryHeap

{

果然,从BnMemoryHeap派生,那就是Bn端。这样就和Binder挂上钩了

//Bp端调用的函数最终都会调到Bn这来

对Binder机制不了解的,可以参考:

http://blog.csdn.net/Innost/archive/2011/01/08/6124685.aspx

有好几个构造函数,我们看看我们使用的:

MemoryHeapBase::MemoryHeapBase(size_t size, uint32_t flags, char const * name)      : mFD(-1), mSize(0), mBase(MAP_FAILED), mFlags(flags),        mDevice(0), mNeedUnmap(false)  {      const size_t pagesize = getpagesize();  size = ((size + pagesize-1) & ~(pagesize-1));  //创建共享内存,ashmem_create_region这个是系统提供的,可以不管它  //设备上打开的是/dev/ashmem设备,而Host上打开的是一个tmp文件  int fd = ashmem_create_region(name == NULL ? "MemoryHeapBase" : name, size);  mapfd(fd, size);//把刚才那个fd通过mmap方式得到一块内存  //不明白得去man mmap看看  mapfd完了后,mBase变量指向内存的起始位置, mSize是分配的内存大小,mFd是  ashmem_create_region返回的文件描述符     }

MemoryHeapBase提供了一下几个函数,可以获取共享内存的大小和位置。

getBaseID()--->返回mFd,如果为负数,表明刚才创建共享内存失败了

getBase()->返回mBase,内存位置

getSize()->返回mSize,内存大小

有了MemoryHeapBase,又搞了一个MemoryBase,这又是一个和Binder机制挂钩的类。

唉,这个估计是一个在MemoryHeapBase上的方便类吧?因为我看见了offset

那么估计这个类就是一个能返回当前Buffer中写位置(就是offset)的方便类

这样就不用用户到处去计算读写位置了。

class MemoryBase : public BnMemory  {  public:      MemoryBase(const sp<IMemoryHeap>& heap, ssize_t offset, size_t size);      virtual sp<IMemoryHeap> getMemory(ssize_t* offset, size_t* size) const;  protected:      size_t getSize() const { return mSize; }      ssize_t getOffset() const { return mOffset; }      const sp<IMemoryHeap>& getHeap() const { return mHeap; }  };

好了,明白上面两个MemoryXXX,我们可以猜测下大概的使用方法了。

l         BnXXX端先分配BnMemoryHeapBase和BnMemoryBase,

l         然后把BnMemoryBase传递到BpXXX

l         BpXXX就可以使用BpMemoryBase得到BnXXX端分配的共享内存了。

注意,既然是进程间共享内存,那么Bp端肯定使用memcpy之类的函数来操作内存,这些函数是没有同步保护的,而且Android也不可能在系统内部为这种共享内存去做增加同步保护。所以看来后续在操作这些共享内存的时候,肯定存在一个跨进程的同步保护机制。我们在后面讲实际播放的时候会碰到。

另外,这里的SharedBuffer最终会在Bp端也就是AudioFlinger那用到。

3.4 分析之play和write

JAVA层到这一步后就是调用play和write了。JAVA层这两个函数没什么内容,都是直接转到native层干活了。

先看看play函数对应的JNI函数

static void  android_media_AudioTrack_start(JNIEnv *env, jobject thiz)  {  //看见没,从JAVA那个AudioTrack对象获取保存的C++层的AudioTrack对象指针  //从int类型直接转换成指针。要是以后ARM变成64位平台了,看google怎么改!      AudioTrack *lpTrack = (AudioTrack *)env->GetIntField(          thiz, javaAudioTrackFields.nativeTrackInJavaObj);      lpTrack->start(); //这个以后再说  }

下面是write。我们写的是short数组,

static jint  android_media_AudioTrack_native_write_short(JNIEnv *env,  jobject thiz,                                                    jshortArray javaAudioData,                                                    jint offsetInShorts,  jint sizeInShorts,                                                    jint javaAudioFormat) {      return (android_media_AudioTrack_native_write(env, thiz,                                                   (jbyteArray) javaAudioData,                                                   offsetInShorts*2, sizeInShorts*2,                                                   javaAudioFormat)              / 2);  }  烦人,又根据Byte还是Short封装了下,最终会调到重要函数writeToTrack去  jint writeToTrack(AudioTrack* pTrack, jint audioFormat, jbyte* data,                    jint offsetInBytes, jint sizeInBytes) {        ssize_t written = 0;      // regular write() or copy the data to the AudioTrack's shared memory?  if (pTrack->sharedBuffer() == 0) {  //创建的是流的方式,所以没有共享内存在track中  //还记得我们在native_setup中调用的set吗?流模式下AudioTrackJniStorage可没创建  //共享内存          written = pTrack->write(data + offsetInBytes, sizeInBytes);      } else {          if (audioFormat == javaAudioTrackFields.PCM16) {              // writing to shared memory, check for capacity              if ((size_t)sizeInBytes > pTrack->sharedBuffer()->size()) {                  sizeInBytes = pTrack->sharedBuffer()->size();              }             //看见没?STATIC模式的,就直接把数据拷贝到共享内存里            //当然,这个共享内存是pTrack的,是我们在set时候把AudioTrackJniStorage的  //共享设进去的              memcpy(pTrack->sharedBuffer()->pointer(),  data + offsetInBytes, sizeInBytes);              written = sizeInBytes;          } else if (audioFormat == javaAudioTrackFields.PCM8) {             PCM8格式的要先转换成PCM16                   }      return written;  }

到这里,似乎很简单啊,JAVA层的AudioTrack,无非就是调用write函数,而实际由JNI层的C++ AudioTrack write数据。反正JNI这层是再看不出什么有意思的东西了。

四 AudioTrack(C++层)

接上面的内容,我们知道在JNI层,有以下几个步骤:

l         new了一个AudioTrack

l         调用set函数,把AudioTrackJniStorage等信息传进去

l         调用了AudioTrack的start函数

l         调用AudioTrack的write函数

那么,我们就看看真正干活的的C++AudioTrack吧。

AudioTrack.cpp位于framework/base/libmedia/AudioTrack.cpp

4.1 new AudioTrack()和set调用

JNI层调用的是最简单的构造函数:

AudioTrack::AudioTrack()      : mStatus(NO_INIT) //把状态初始化成NO_INIT。Android大量使用了设计模式中的state。  {  }

接下来调用set。我们看看JNI那set了什么

 lpTrack->set(              atStreamType, //应该是Music吧              sampleRateInHertz,//8000              format,// 应该是PCM_16吧              channels,//立体声=2              frameCount,//              0,// flags              audioCallback, //JNI中的一个回调函数  &(lpJniStorage->mCallbackData),//回调函数的参数              0,// 通知回调函数,表示AudioTrack需要数据,不过暂时没用上              0,//共享buffer地址,stream模式没有              true);//回调线程可以调JAVA的东西  那我们看看set函数把。  status_t AudioTrack::set(          int streamType,          uint32_t sampleRate,          int format,          int channels,          int frameCount,          uint32_t flags,          callback_t cbf,          void* user,          int notificationFrames,          const sp<IMemory>& sharedBuffer,          bool threadCanCallJava)  {

...前面一堆的判断,等以后讲AudioSystem再说

audio_io_handle_t output =  AudioSystem::getOutput((AudioSystem::stream_type)streamType,              sampleRate, format, channels, (AudioSystem::output_flags)flags);     //createTrack?看来这是真正干活的      status_t status = createTrack(streamType, sampleRate, format, channelCount,                                    frameCount, flags, sharedBuffer, output);    //cbf是JNI传入的回调函数audioCallback       if (cbf != 0) { //看来,怎么着也要创建这个线程了!          mAudioTrackThread = new AudioTrackThread(*this, threadCanCallJava);         }     return NO_ERROR;  }

看看真正干活的createTrack

status_t AudioTrack::createTrack(          int streamType,          uint32_t sampleRate,          int format,          int channelCount,          int frameCount,          uint32_t flags,          const sp<IMemory>& sharedBuffer,          audio_io_handle_t output)  {  status_t status;  //啊,看来和audioFlinger挂上关系了呀。      const sp<IAudioFlinger>& audioFlinger = AudioSystem::get_audio_flinger();        //下面这个调用最终会在AudioFlinger中出现。暂时不管它。      sp<IAudioTrack> track = audioFlinger->createTrack(getpid(),                                                        streamType,                                                        sampleRate,                                                        format,                                                        channelCount,                                                        frameCount,                                                        ((uint16_t)flags) << 16,                                                        sharedBuffer,                                                        output,                                                        &status);        //看见没,从track也就是AudioFlinger那边得到一个IMemory接口  //这个看来就是最终write写入的地方      sp<IMemory> cblk = track->getCblk();      mAudioTrack.clear();      mAudioTrack = track;      mCblkMemory.clear();//sp<XXX>的clear,就看着做是delete XXX吧      mCblkMemory = cblk;      mCblk = static_cast<audio_track_cblk_t*>(cblk->pointer());      mCblk->out = 1;           mFrameCount = mCblk->frameCount;  if (sharedBuffer == 0) {  //终于看到buffer相关的了。注意我们这里的情况  //STREAM模式没有传入共享buffer,但是数据确实又需要buffer承载。  //反正AudioTrack是没有创建buffer,那只能是刚才从AudioFlinger中得到  //的buffer了。          mCblk->buffers = (char*)mCblk + sizeof(audio_track_cblk_t);      }      return NO_ERROR;  }

还记得我们说MemoryXXX没有同步机制,所以这里应该有一个东西能体现同步的,

那么我告诉大家,就在audio_track_cblk_t结构中。它的头文件在

framework/base/include/private/media/AudioTrackShared.h

实现文件就在AudioTrack.cpp中

audio_track_cblk_t::audio_track_cblk_t()  //看见下面的SHARED没?都是表示跨进程共享的意思。这个我就不跟进去说了  //等以后介绍同步方面的知识时,再细说      : lock(Mutex::SHARED), cv(Condition::SHARED), user(0), server(0),      userBase(0), serverBase(0), buffers(0), frameCount(0),      loopStart(UINT_MAX), loopEnd(UINT_MAX), loopCount(0), volumeLR(0),      flowControlFlag(1), forceReady(0)  {  }

到这里,大家应该都有个大概的全景了。

l         AudioTrack得到AudioFlinger中的一个IAudioTrack对象,这里边有一个很重要的数据结构audio_track_cblk_t,它包括一块缓冲区地址,包括一些进程间同步的内容,可能还有数据位置等内容

l         AudioTrack启动了一个线程,叫AudioTrackThread,这个线程干嘛的呢?还不知道

l         AudioTrack调用write函数,肯定是把数据写到那块共享缓冲了,然后IAudioTrack在另外一个进程AudioFlinger中(其实AudioFlinger是一个服务,在mediaservice中运行)接收数据,并最终写到音频设备中。

那我们先看看AudioTrackThread干什么了。

调用的语句是:

mAudioTrackThread = new AudioTrackThread(*this, threadCanCallJava);

AudioTrackThread从Thread中派生,这个内容在深入浅出Binder机制讲过了。

反正最终会调用AudioTrackAThread的threadLoop函数。

先看看构造函数

AudioTrack::AudioTrackThread::AudioTrackThread(AudioTrack& receiver, bool bCanCallJava)      : Thread(bCanCallJava), mReceiver(receiver)  {  //mReceiver就是AudioTrack对象    // bCanCallJava为TRUE  }

这个线程的启动由AudioTrack的start函数触发。

void AudioTrack::start()  {    //start函数调用AudioTrackThread函数触发产生一个新的线程,执行mAudioTrackThread的  threadLoop      sp<AudioTrackThread> t = mAudioTrackThread;  t->run("AudioTrackThread", THREAD_PRIORITY_AUDIO_CLIENT);  //让AudioFlinger中的track也start      status_t status = mAudioTrack->start();  }  bool AudioTrack::AudioTrackThread::threadLoop()  {    //太恶心了,又调用AudioTrack的processAudioBuffer函数  return mReceiver.processAudioBuffer(this);  }  bool AudioTrack::processAudioBuffer(const sp<AudioTrackThread>& thread)  {  Buffer audioBuffer;      uint32_t frames;      size_t writtenSize;        ...回调1           mCbf(EVENT_UNDERRUN, mUserData, 0);  ...回调2 都是传递一些信息到JNI里边           mCbf(EVENT_BUFFER_END, mUserData, 0);           // Manage loop end callback      while (mLoopCount > mCblk->loopCount) {          mCbf(EVENT_LOOP_END, mUserData, (void *)&loopCount);      }    //下面好像有写数据的东西        do {         audioBuffer.frameCount = frames;  //获得buffer,         status_t err = obtainBuffer(&audioBuffer, 1);          size_t reqSize = audioBuffer.size;  //把buffer回调到JNI那去,这是单独一个线程,而我们还有上层用户在那不停  //地write呢,怎么会这样?          mCbf(EVENT_MORE_DATA, mUserData, &audioBuffer);           audioBuffer.size = writtenSize;           frames -= audioBuffer.frameCount;         releaseBuffer(&audioBuffer); //释放buffer,和obtain相对应,看来是LOCK和UNLOCK  操作了      }      while (frames);     return true;  }  难道真的有两处在write数据?看来必须得到mCbf去看看了,传的是EVENT_MORE_DATA标志。  mCbf由set的时候传入C++的AudioTrack,实际函数是:  static void audioCallback(int event, void* user, void *info) {      if (event == AudioTrack::EVENT_MORE_DATA) {           //哈哈,太好了,这个函数没往里边写数据          AudioTrack::Buffer* pBuff = (AudioTrack::Buffer*)info;          pBuff->size = 0;        }

从代码上看,本来google考虑是异步的回调方式来写数据,可惜发现这种方式会比较复杂,尤其是对用户开放的JAVA AudioTrack会很不好处理,所以嘛,偷偷摸摸得给绕过去了。

太好了,看来就只有用户的write会真正的写数据了,这个AudioTrackThread除了通知一下,也没什么实际有意义的操作了。

让我们看看write吧。

4.2 write

ssize_t AudioTrack::write(const void* buffer, size_t userSize)

{

够简单,就是obtainBuffer,memcpy数据,然后releasBuffer

眯着眼睛都能想到,obtainBuffer一定是Lock住内存了,releaseBuffer一定是unlock内存了

do {         audioBuffer.frameCount = userSize/frameSize();         status_t err = obtainBuffer(&audioBuffer, -1);          size_t toWrite;          toWrite = audioBuffer.size;          memcpy(audioBuffer.i8, src, toWrite);          src += toWrite;         }         userSize -= toWrite;         written += toWrite;         releaseBuffer(&audioBuffer);     } while (userSize);       return written;

obtainBuffer太复杂了,不过大家知道其大概工作方式就可以了

status_t AudioTrack::obtainBuffer(Buffer* audioBuffer, int32_t waitCount)  {     //恕我中间省略太多,大部分都是和当前数据位置相关,   uint32_t framesAvail = cblk->framesAvailable();       cblk->lock.lock();//看见没,lock了       result = cblk->cv.waitRelative(cblk->lock, milliseconds(waitTimeMs));  //我发现很多地方都要判断远端的AudioFlinger的状态,比如是否退出了之类的,难道  //没有一个好的方法来集中处理这种事情吗?        if (result == DEAD_OBJECT) {          result = createTrack(mStreamType, cblk->sampleRate, mFormat, mChannelCount,            mFrameCount, mFlags, mSharedBuffer,getOutput());          }  //得到buffer      audioBuffer->raw = (int8_t *)cblk->buffer(u);    return active ? status_t(NO_ERROR) : status_t(STOPPED);  }  在看看releaseBuffer  void AudioTrack::releaseBuffer(Buffer* audioBuffer)  {      audio_track_cblk_t* cblk = mCblk;  cblk->stepUser(audioBuffer->frameCount);  }  uint32_t audio_track_cblk_t::stepUser(uint32_t frameCount)  {      uint32_t u = this->user;         u += frameCount;       if (out) {            if (bufferTimeoutMs == MAX_STARTUP_TIMEOUT_MS-1) {              bufferTimeoutMs = MAX_RUN_TIMEOUT_MS;          }      } else if (u > this->server) {           u = this->server;      }         if (u >= userBase + this->frameCount) {          userBase += this->frameCount;      }     this->user = u;    flowControlFlag = 0;    return u;  }

奇怪了,releaseBuffer没有unlock操作啊?难道我失误了?

再去看看obtainBuffer?为何写得这么晦涩难懂?

原来在obtainBuffer中会某一次进去lock,再某一次进去可能就是unlock了。没看到obtainBuffer中到处有lock,unlock,wait等同步操作吗。一定是这个道理。难怪写这么复杂。还使用了少用的goto语句。

唉,有必要这样吗!

五 AudioTrack总结

通过这一次的分析,我自己觉得有以下几个点:

l         AudioTrack的工作原理,尤其是数据的传递这一块,做了比较细致的分析,包括共享内存,跨进程的同步等,也能解释不少疑惑了。

l         看起来,最重要的工作是在AudioFlinger中做的。通过AudioTrack的介绍,我们给后续深入分析AudioFlinger提供了一个切入点

工作原理和流程嘛,再说一次好了,JAVA层就看最前面那个例子吧,实在没什么说的。

l         AudioTrack被new出来,然后set了一堆信息,同时会通过Binder机制调用另外一端的AudioFlinger,得到IAudioTrack对象,通过它和AudioFlinger交互。

l         调用start函数后,会启动一个线程专门做回调处理,代码里边也会有那种数据拷贝的回调,但是JNI层的回调函数实际并没有往里边写数据,大家只要看write就可以了

l         用户一次次得write,那AudioTrack无非就是把数据memcpy到共享buffer中咯

感谢各位的阅读,以上就是“AudioTrack API怎么使用”的内容了,经过本文的学习后,相信大家对AudioTrack API怎么使用这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI