这期内容当中小编将会给大家带来有关RT-Thread中的内核对象操作API怎么理解,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
目的还是学习并熟悉RT-Thread 操作系统。
从最简单的对象管理切入
了解操作系统最基本的组成单位:Object
内核对象的主要操作方法:内核文件:object.c中实现
查看内核文件:object.c,发现的主要的几个知识点
光看内核代码,不如敲一敲(抄一下)。
可以使用模拟器,写几个测试函数,看看对象操作的流程。
测试用例如下:
/* RT-Thread 内核对象学习 */ #include <rtthread.h> struct _obj_type { enum rt_object_class_type type; const char* name; }; /* 静态的对象定义 */ static struct rt_object _obj[] = { 0 }; /* 测试用,线程对象 */ static const struct _obj_type _obj_tbl[] = { { RT_Object_Class_Thread, "th_01" }, { RT_Object_Class_Thread, "th_02" }, { RT_Object_Class_Thread, "th_03" }, { RT_Object_Class_Thread, "th_04" }, { RT_Object_Class_Thread, "th_05" }, }; #define OBJ_TEST_TBL_SIZE (sizeof(_obj_tbl) / sizeof(_obj_tbl[0])) /* 静态初始化对象 */ void obj_test_init(void) { rt_uint8_t index = 0; rt_uint8_t obj_size = 0; for (index = 0; index < OBJ_TEST_TBL_SIZE; index++) { rt_object_init(&_obj[index], _obj_tbl[index].type, _obj_tbl[index].name); } } /* 动态创建对象 obj_test_create thread1 */ void obj_test_create(uint8_t argc, char** argv) { struct rt_object* obj = RT_NULL; if (argc >= 2) { rt_kprintf(" obj_name=%s\n", argv[1]); } obj = rt_object_find(argv[1], RT_Object_Class_Thread); if (obj != RT_NULL) { rt_kprintf("obj_name=%s, exist!!\n", obj->name); return; } else { rt_object_allocate(RT_Object_Class_Thread, argv[1]); rt_kprintf("create obj_name=%s\n", argv[1]); } } /* 对象的打印 */ void obj_test_dump(void) { rt_uint8_t index = 0; rt_uint8_t obj_size = 0; struct rt_object* obj_pointers[OBJ_TEST_TBL_SIZE + 10] = { 0 }; obj_size = rt_object_get_pointers(RT_Object_Class_Thread, obj_pointers, sizeof(obj_pointers)); rt_kprintf("object init : object size=%d\n", obj_size); rt_kprintf("| index | name | flag | type |\n"); rt_kprintf("+-------+--------------+--------+--------+\n"); for (index = 0; index < obj_size; index++) { if (obj_pointers[index] == RT_NULL) { break; } rt_kprintf("| %03d | %10s | %02d | 0x%02x |\n", index, obj_pointers[index]->name, obj_pointers[index]->flag, obj_pointers[index]->type); } rt_kprintf("+-------+--------------+--------+--------+\n"); } /* 查找线程对象 */ void obj_test_find(uint8_t argc, char** argv) { struct rt_object* obj = RT_NULL; if (argc >= 2) { rt_kprintf(" obj_name=%s\n", argv[1]); } obj = rt_object_find(argv[1], RT_Object_Class_Thread); if (obj != RT_NULL) { rt_kprintf("find obj_name=%s\n", obj->name); } else { rt_kprintf("not find obj_name=%s\n", argv[1]); } } /* 静态对象 detach */ void obj_test_detach(uint8_t argc, char** argv) { struct rt_object* obj = RT_NULL; if (argc >= 2) { rt_kprintf(" obj_name=%s\n", argv[1]); } obj = rt_object_find(argv[1], RT_Object_Class_Thread); if (obj != RT_NULL) { rt_kprintf("find obj_name=%s\n", obj->name); rt_object_detach(obj); rt_kprintf("detach obj_name=%s\n", obj->name); } else { rt_kprintf("not find obj_name=%s\n", argv[1]); } } /* 动态对象 delete */ void obj_test_delete(uint8_t argc, char** argv) { struct rt_object* obj = RT_NULL; if (argc >= 2) { rt_kprintf(" obj_name=%s\n", argv[1]); } obj = rt_object_find(argv[1], RT_Object_Class_Thread); if (obj != RT_NULL) { rt_kprintf("find obj_name=%s\n", obj->name); rt_object_delete(obj); rt_kprintf("delete obj_name=%s\n", obj->name); } else { rt_kprintf("not find obj_name=%s\n", argv[1]); } } /* 导出命令 */ MSH_CMD_EXPORT(obj_test_init, object init test); MSH_CMD_EXPORT(obj_test_create, obj create test); MSH_CMD_EXPORT(obj_test_dump, object test dump); MSH_CMD_EXPORT(obj_test_find, object test find); MSH_CMD_EXPORT(obj_test_detach, object test detach); MSH_CMD_EXPORT(obj_test_delete, object test del);
发现:tshell 是动态创建的线程
发现:tidle 是静态的线程
msh />obj_test_dump object init : object size=2 | index | name | flag | type | +-------+--------------+--------+--------+ | 000 | tshell | 00 | 0x01 | | 001 | tidle0 | 00 | 0x81 | +-------+--------------+--------+--------+ msh />
动态对象,创建后,内存占用增加。
动态对象,删除后,内存占用恢复
msh />free total memory: 8388580 used memory : 5164 /* 【5164】 内存原有大小 */ maximum allocated memory: 7336 msh /> msh />obj obj_test_init obj_test_create obj_test_dump obj_test_find obj_test_detach obj_test_delete msh />obj_test_cre obj_test_create msh />obj_test_create hello obj_name=hello create obj_name=hello msh /> msh />fre free msh />free total memory: 8388580 used memory : 5304 /* 【5304】 内存占用 */ maximum allocated memory: 7336 msh /> msh />obj_test_delete hello obj_name=hello find obj_name=hello delete obj_name=hello msh />free total memory: 8388580 used memory : 5164 /* 【5304】,内存占用恢复 */ maximum allocated memory: 7336 msh />
静态初始化的对象,detach(剔除对象管理)后,内存占用不变。
msh />obj_test_init msh />ob obj_test_init obj_test_create obj_test_dump obj_test_find obj_test_detach obj_test_delete msh />obj_test_du obj_test_dump msh />obj_test_dump object init : object size=7 | index | name | flag | type | +-------+--------------+--------+--------+ | 000 | th_05 | 00 | 0x81 | | 001 | th_04 | 00 | 0x81 | | 002 | th_03 | 00 | 0x81 | | 003 | th_02 | 00 | 0x81 | | 004 | th_01 | 00 | 0x81 | | 005 | tshell | 00 | 0x01 | | 006 | tidle0 | 00 | 0x81 | +-------+--------------+--------+--------+ msh />free total memory: 8388580 used memory : 5164 maximum allocated memory: 7336 msh /> msh />obj obj_test_init obj_test_create obj_test_dump obj_test_find obj_test_detach obj_test_delete msh />obj_test_deta obj_test_detach msh />obj_test_detach th_04 obj_name=th_04 find obj_name=th_04 detach obj_name=th_04 msh />obj_test_du obj_test_dump msh />obj_test_dump object init : object size=6 | index | name | flag | type | +-------+--------------+--------+--------+ | 000 | th_05 | 00 | 0x81 | | 001 | th_03 | 00 | 0x81 | | 002 | th_02 | 00 | 0x81 | | 003 | th_01 | 00 | 0x81 | | 004 | tshell | 00 | 0x01 | | 005 | tidle0 | 00 | 0x81 | +-------+--------------+--------+--------+ msh /> msh />free total memory: 8388580 used memory : 5164 maximum allocated memory: 7336
上述就是小编为大家分享的RT-Thread中的内核对象操作API怎么理解了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。