本篇文章给大家分享的是有关如何用DL4J构建起一个人脸识别系统,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。
一、概述
人脸识别本质上是一个求相似度的问题,相同的人脸映射到同一个空间,他们的距离比较近,这个距离的度量可以是余弦距离,也可以是欧几里得距离,或者其他的距离。下面有三个头像。
A B C
显然A和C是相同人脸,A和B是不同人脸,用数学怎么描述呢?假设有个距离函数d(x1,x2),那么 d(A,B) > d(A,C)。在真实的人脸识别应用中,函数d(x1,x2)小到一个什么范围才认定为同一张人脸呢?这个值和训练模型时的参数有关,这个将在下文中给出。值得注意的是,如果函数d为cosine,则值越大表示越相似。一个通用的人脸识别模型应该包含特征提取(也就是特征映射)和距离计算两个单元。
二、构造模型
那么有什么办法可以特征映射呢?对于图像的处理,卷积神经网络无疑是目前最优的办法。DeepLearning4J已经内置了训练好的VggFace模型,是基于vgg16训练的。vggFace的下载地址:https://dl4jdata.blob.core.windows.net/models/vgg16_dl4j_vggface_inference.v1.zip,这个地址是怎么获取到的呢?直接跟一下源码VGG16,pretrainedUrl方法里的DL4JResources.getURLString方法便有相关模型的下载地址,VGG19、ResNet50等等pretrained的模型下载地址,都可以这样找到。源码如下
public class VGG16 extends ZooModel { @Builder.Default private long seed = 1234; @Builder.Default private int[] inputShape = new int[] {3, 224, 224}; @Builder.Default private int numClasses = 0; @Builder.Default private IUpdater updater = new Nesterovs(); @Builder.Default private CacheMode cacheMode = CacheMode.NONE; @Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED; @Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST; private VGG16() {} @Override public String pretrainedUrl(PretrainedType pretrainedType) { if (pretrainedType == PretrainedType.IMAGENET) return DL4JResources.getURLString("models/vgg16_dl4j_inference.zip"); else if (pretrainedType == PretrainedType.CIFAR10) return DL4JResources.getURLString("models/vgg16_dl4j_cifar10_inference.v1.zip"); else if (pretrainedType == PretrainedType.VGGFACE) return DL4JResources.getURLString("models/vgg16_dl4j_vggface_inference.v1.zip"); else return null; }
vgg16的模型结构如下:
==================================================================================================== VertexName (VertexType) nIn,nOut TotalParams ParamsShape Vertex Inputs ==================================================================================================== input_1 (InputVertex) -,- - - - conv1_1 (ConvolutionLayer) 3,64 1,792 W:{64,3,3,3}, b:{1,64} [input_1] conv1_2 (ConvolutionLayer) 64,64 36,928 W:{64,64,3,3}, b:{1,64} [conv1_1] pool1 (SubsamplingLayer) -,- 0 - [conv1_2] conv2_1 (ConvolutionLayer) 64,128 73,856 W:{128,64,3,3}, b:{1,128} [pool1] conv2_2 (ConvolutionLayer) 128,128 147,584 W:{128,128,3,3}, b:{1,128} [conv2_1] pool2 (SubsamplingLayer) -,- 0 - [conv2_2] conv3_1 (ConvolutionLayer) 128,256 295,168 W:{256,128,3,3}, b:{1,256} [pool2] conv3_2 (ConvolutionLayer) 256,256 590,080 W:{256,256,3,3}, b:{1,256} [conv3_1] conv3_3 (ConvolutionLayer) 256,256 590,080 W:{256,256,3,3}, b:{1,256} [conv3_2] pool3 (SubsamplingLayer) -,- 0 - [conv3_3] conv4_1 (ConvolutionLayer) 256,512 1,180,160 W:{512,256,3,3}, b:{1,512} [pool3] conv4_2 (ConvolutionLayer) 512,512 2,359,808 W:{512,512,3,3}, b:{1,512} [conv4_1] conv4_3 (ConvolutionLayer) 512,512 2,359,808 W:{512,512,3,3}, b:{1,512} [conv4_2] pool4 (SubsamplingLayer) -,- 0 - [conv4_3] conv5_1 (ConvolutionLayer) 512,512 2,359,808 W:{512,512,3,3}, b:{1,512} [pool4] conv5_2 (ConvolutionLayer) 512,512 2,359,808 W:{512,512,3,3}, b:{1,512} [conv5_1] conv5_3 (ConvolutionLayer) 512,512 2,359,808 W:{512,512,3,3}, b:{1,512} [conv5_2] pool5 (SubsamplingLayer) -,- 0 - [conv5_3] flatten (PreprocessorVertex) -,- - - [pool5] fc6 (DenseLayer) 25088,4096 102,764,544 W:{25088,4096}, b:{1,4096} [flatten] fc7 (DenseLayer) 4096,4096 16,781,312 W:{4096,4096}, b:{1,4096} [fc6] fc8 (DenseLayer) 4096,2622 10,742,334 W:{4096,2622}, b:{1,2622} [fc7] ---------------------------------------------------------------------------------------------------- Total Parameters: 145,002,878 Trainable Parameters: 145,002,878 Frozen Parameters: 0
对于VggFace我们只需要前面的卷积层和池化层来提取特征,其他的全连接层可以丢弃掉,那么我们的模型可以设置成如下的样子。
说明:这里用StackVertex和UnStackVertex的原因是,dl4j中默认情况下有都给输入时是把张量Merge在一起输入的,达不到多个输入共享权重的目的,所以这里先用StackVertex沿着第0维堆叠张量,共享卷积和池化提取特征,再用UnStackVertex拆开张量,给后面用于计算距离用。
接下来的问题是,dl4j中迁移学习api只能在模型尾部追加相关的结构,而现在我们的场景是把pretrained的模型的部分结构放在中间,怎么办呢?不着急,我们看看迁移学习API的源码,看DL4J是怎么封装的。在org.deeplearning4j.nn.transferlearning.TransferLearning的build方法中找到了蛛丝马迹。
public ComputationGraph build() { initBuilderIfReq(); ComputationGraphConfiguration newConfig = editedConfigBuilder .validateOutputLayerConfig(validateOutputLayerConfig == null ? true : validateOutputLayerConfig).build(); if (this.workspaceMode != null) newConfig.setTrainingWorkspaceMode(workspaceMode); ComputationGraph newGraph = new ComputationGraph(newConfig); newGraph.init(); int[] topologicalOrder = newGraph.topologicalSortOrder(); org.deeplearning4j.nn.graph.vertex.GraphVertex[] vertices = newGraph.getVertices(); if (!editedVertices.isEmpty()) { //set params from orig graph as necessary to new graph for (int i = 0; i < topologicalOrder.length; i++) { if (!vertices[topologicalOrder[i]].hasLayer()) continue; org.deeplearning4j.nn.api.Layer layer = vertices[topologicalOrder[i]].getLayer(); String layerName = vertices[topologicalOrder[i]].getVertexName(); long range = layer.numParams(); if (range <= 0) continue; //some layers have no params if (editedVertices.contains(layerName)) continue; //keep the changed params INDArray origParams = origGraph.getLayer(layerName).params(); layer.setParams(origParams.dup()); //copy over origGraph params } } else { newGraph.setParams(origGraph.params()); }
原来是直接调用 layer.setParams方法,给每一个层set相关的参数即可。接下来,我们就有思路了,直接构造一个和vgg16一样的模型,把vgg16的参数set到新的模型里即可。其实本质上,DeepLearning被train之后,有用的就是参数而已,有了这些参数,我们就可以随心所欲的用这些模型了。废话不多说,我们直接上代码,构建我们目标模型
private static ComputationGraph buildModel() { ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder().seed(123) .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).activation(Activation.RELU) .graphBuilder().addInputs("input1", "input2").addVertex("stack", new StackVertex(), "input1", "input2") .layer("conv1_1", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nIn(3).nOut(64) .build(), "stack") .layer("conv1_2", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(64).build(), "conv1_1") .layer("pool1", new SubsamplingLayer.Builder().poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build(), "conv1_2") // block 2 .layer("conv2_1", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(128).build(), "pool1") .layer("conv2_2", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(128).build(), "conv2_1") .layer("pool2", new SubsamplingLayer.Builder().poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build(), "conv2_2") // block 3 .layer("conv3_1", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(256).build(), "pool2") .layer("conv3_2", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(256).build(), "conv3_1") .layer("conv3_3", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(256).build(), "conv3_2") .layer("pool3", new SubsamplingLayer.Builder().poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build(), "conv3_3") // block 4 .layer("conv4_1", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(), "pool3") .layer("conv4_2", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(), "conv4_1") .layer("conv4_3", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(), "conv4_2") .layer("pool4", new SubsamplingLayer.Builder().poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build(), "conv4_3") // block 5 .layer("conv5_1", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(), "pool4") .layer("conv5_2", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(), "conv5_1") .layer("conv5_3", new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(), "conv5_2") .layer("pool5", new SubsamplingLayer.Builder().poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2) .stride(2, 2).build(), "conv5_3") .addVertex("unStack1", new UnstackVertex(0, 2), "pool5") .addVertex("unStack2", new UnstackVertex(1, 2), "pool5") .addVertex("cosine", new CosineLambdaVertex(), "unStack1", "unStack2") .addLayer("out", new LossLayer.Builder().build(), "cosine").setOutputs("out") .setInputTypes(InputType.convolutionalFlat(224, 224, 3), InputType.convolutionalFlat(224, 224, 3)) .build(); ComputationGraph network = new ComputationGraph(conf); network.init(); return network; }
接下来读取VGG16的参数,set到我们的新模型里。为了代码方便,我们将LayerName设定的和vgg16里一样
String vggLayerNames = "conv1_1,conv1_2,conv2_1,conv2_2,conv3_1,conv3_2,conv3_3,conv4_1,conv4_2,conv4_3,conv5_1,conv5_2,conv5_3"; File vggfile = new File("F:/vgg16_dl4j_vggface_inference.v1.zip"); ComputationGraph vggFace = ModelSerializer.restoreComputationGraph(vggfile); ComputationGraph model = buildModel(); for (String name : vggLayerNames.split(",")) { model.getLayer(name).setParams(vggFace.getLayer(name).params().dup()); }
特征提取层构造完毕,提取特征之后,我们要计算距离了,这里就需要用DL4J实现自定义层,DL4J提供的自动微分可以非常方便的实现自定义层,这里我们选择 SameDiffLambdaVertex,原因是这一层不需要任何参数,仅仅计算cosine即可,代码如下:
public class CosineLambdaVertex extends SameDiffLambdaVertex { @Override public SDVariable defineVertex(SameDiff sameDiff, VertexInputs inputs) { SDVariable input1 = inputs.getInput(0); SDVariable input2 = inputs.getInput(1); return sameDiff.expandDims(sameDiff.math.cosineSimilarity(input1, input2, 1, 2, 3), 1); } @Override public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException { return InputType.feedForward(1); } }
说明:计算cosine之后这里用expandDims将一维张量拓宽成二维,是为了在LFW数据集中验证模型的准确性。
DL4J也提供其他的自定层和自定义节点的实现,一共有如下五种:
Layers: standard single input, single output layers defined using SameDiff. To implement, extend org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
Lambda layers: as above, but without any parameters. You only need to implement a single method for these! To implement, extend org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer
Graph vertices: multiple inputs, single output layers usable only in ComputationGraph. To implement: extend org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
Lambda vertices: as above, but without any parameters. Again, you only need to implement a single method for these! To implement, extend org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaVertex
Output layers: An output layer, for calculating scores/losses. Used as the final layer in a network. To implement, extend org.deeplearning4j.nn.conf.layers.samediff.SameDiffOutputLayer
案例地址:https://github.com/eclipse/deeplearning4j-examples/tree/master/samediff-examples
说明文档:https://github.com/eclipse/deeplearning4j-examples/blob/master/samediff-examples/src/main/java/org/nd4j/examples/samediff/customizingdl4j/README.md
接下来,还有最后一个问题,输出层怎么定义?输出层不需要任何参数和计算,仅仅将cosine结果输出即可,dl4j中提供LossLayer天然满足这种结构,没有参数,且激活函数为恒等函数IDENTITY。那么到此为止模型构造完成,最终结构如下:
========================================================================================================= VertexName (VertexType) nIn,nOut TotalParams ParamsShape Vertex Inputs ========================================================================================================= input1 (InputVertex) -,- - - - input2 (InputVertex) -,- - - - stack (StackVertex) -,- - - [input1, input2] conv1_1 (ConvolutionLayer) 3,64 1,792 W:{64,3,3,3}, b:{1,64} [stack] conv1_2 (ConvolutionLayer) 64,64 36,928 W:{64,64,3,3}, b:{1,64} [conv1_1] pool1 (SubsamplingLayer) -,- 0 - [conv1_2] conv2_1 (ConvolutionLayer) 64,128 73,856 W:{128,64,3,3}, b:{1,128} [pool1] conv2_2 (ConvolutionLayer) 128,128 147,584 W:{128,128,3,3}, b:{1,128} [conv2_1] pool2 (SubsamplingLayer) -,- 0 - [conv2_2] conv3_1 (ConvolutionLayer) 128,256 295,168 W:{256,128,3,3}, b:{1,256} [pool2] conv3_2 (ConvolutionLayer) 256,256 590,080 W:{256,256,3,3}, b:{1,256} [conv3_1] conv3_3 (ConvolutionLayer) 256,256 590,080 W:{256,256,3,3}, b:{1,256} [conv3_2] pool3 (SubsamplingLayer) -,- 0 - [conv3_3] conv4_1 (ConvolutionLayer) 256,512 1,180,160 W:{512,256,3,3}, b:{1,512} [pool3] conv4_2 (ConvolutionLayer) 512,512 2,359,808 W:{512,512,3,3}, b:{1,512} [conv4_1] conv4_3 (ConvolutionLayer) 512,512 2,359,808 W:{512,512,3,3}, b:{1,512} [conv4_2] pool4 (SubsamplingLayer) -,- 0 - [conv4_3] conv5_1 (ConvolutionLayer) 512,512 2,359,808 W:{512,512,3,3}, b:{1,512} [pool4] conv5_2 (ConvolutionLayer) 512,512 2,359,808 W:{512,512,3,3}, b:{1,512} [conv5_1] conv5_3 (ConvolutionLayer) 512,512 2,359,808 W:{512,512,3,3}, b:{1,512} [conv5_2] pool5 (SubsamplingLayer) -,- 0 - [conv5_3] unStack1 (UnstackVertex) -,- - - [pool5] unStack2 (UnstackVertex) -,- - - [pool5] cosine (SameDiffGraphVertex) -,- - - [unStack1, unStack2] out (LossLayer) -,- 0 - [cosine] --------------------------------------------------------------------------------------------------------- Total Parameters: 14,714,688 Trainable Parameters: 14,714,688 Frozen Parameters: 0 =========================================================================================================
三、在LFW上验证模型准确率
LFW数据下载地址:http://vis-www.cs.umass.edu/lfw/,我下载之后放在了F:\facerecognition目录下。
构造测试集,分别构造正例和负例,将相同的人脸放一堆,不同的人脸放一堆,代码如下:
import org.apache.commons.io.FileUtils; import java.io.File; import java.io.IOException; import java.util.Arrays; import java.util.List; import java.util.Random; public class DataTools { private static final String PARENT_PATH = "F:/facerecognition"; public static void main(String[] args) throws IOException { File file = new File(PARENT_PATH + "/lfw"); List<File> list = Arrays.asList(file.listFiles()); for (int i = 0; i < list.size(); i++) { String name = list.get(i).getName(); File[] faceFileArray = list.get(i).listFiles(); if (null == faceFileArray) { continue; } //构造正例 if (faceFileArray.length > 1) { String positiveFilePath = PARENT_PATH + "/pairs/1/" + name; File positiveFileDir = new File(positiveFilePath); if (positiveFileDir.exists()) { positiveFileDir.delete(); } positiveFileDir.mkdir(); FileUtils.copyFile(faceFileArray[0], new File(positiveFilePath + "/" + faceFileArray[0].getName())); FileUtils.copyFile(faceFileArray[1], new File(positiveFilePath + "/" + faceFileArray[1].getName())); } //构造负例 String negativeFilePath = PARENT_PATH + "/pairs/0/" + name; File negativeFileDir = new File(negativeFilePath); if (negativeFileDir.exists()) { negativeFileDir.delete(); } negativeFileDir.mkdir(); FileUtils.copyFile(faceFileArray[0], new File(negativeFilePath + "/" + faceFileArray[0].getName())); File[] differentFaceArray = list.get(randomInt(list.size(), i)).listFiles(); int differentFaceIndex = randomInt(differentFaceArray.length, -1); FileUtils.copyFile(differentFaceArray[differentFaceIndex], new File(negativeFilePath + "/" + differentFaceArray[differentFaceIndex].getName())); } } public static int randomInt(int max, int target) { Random random = new Random(); while (true) { int result = random.nextInt(max); if (result != target) { return result; } } } }
测试集构造完成之后,构造迭代器,迭代器中读取图片用了NativeImageLoader,在《如何利用deeplearning4j中datavec对图像进行处理》有相关介绍。
public class DataSetForEvaluation implements MultiDataSetIterator { private List<FacePair> facePairList; private int batchSize; private int totalBatches; private NativeImageLoader imageLoader; private int currentBatch = 0; public DataSetForEvaluation(List<FacePair> facePairList, int batchSize) { this.facePairList = facePairList; this.batchSize = batchSize; this.totalBatches = (int) Math.ceil((double) facePairList.size() / batchSize); this.imageLoader = new NativeImageLoader(224, 224, 3, new ResizeImageTransform(224, 224)); } @Override public boolean hasNext() { return currentBatch < totalBatches; } @Override public MultiDataSet next() { return next(batchSize); } @Override public MultiDataSet next(int num) { int i = currentBatch * batchSize; int currentBatchSize = Math.min(batchSize, facePairList.size() - i); INDArray input1 = Nd4j.zeros(currentBatchSize, 3,224,224); INDArray input2 = Nd4j.zeros(currentBatchSize, 3,224,224); INDArray label = Nd4j.zeros(currentBatchSize, 1); for (int j = 0; j < currentBatchSize; j++) { try { input1.put(new INDArrayIndex[]{NDArrayIndex.point(j),NDArrayIndex.all(),NDArrayIndex.all(),NDArrayIndex.all()}, imageLoader.asMatrix(facePairList.get(i).getList().get(0)).div(255)); input2.put(new INDArrayIndex[]{NDArrayIndex.point(j),NDArrayIndex.all(),NDArrayIndex.all(),NDArrayIndex.all()},imageLoader.asMatrix(facePairList.get(i).getList().get(1)).div(255)); } catch (Exception e) { e.printStackTrace(); } label.putScalar((long) j, 0, facePairList.get(i).getLabel()); ++i; } System.out.println(currentBatch); ++currentBatch; return new org.nd4j.linalg.dataset.MultiDataSet(new INDArray[] { input1, input2}, new INDArray[] { label }); } @Override public void setPreProcessor(MultiDataSetPreProcessor preProcessor) { } @Override public MultiDataSetPreProcessor getPreProcessor() { return null; } @Override public boolean resetSupported() { return true; } @Override public boolean asyncSupported() { return false; } @Override public void reset() { currentBatch = 0; } }
接下来可以评估模型的性能了,准确率和精确率还凑合,但F1值有点低。
========================Evaluation Metrics======================== # of classes: 2 Accuracy: 0.8973 Precision: 0.9119 Recall: 0.6042 F1 Score: 0.7268 Precision, recall & F1: reported for positive class (class 1 - "1") only =========================Confusion Matrix========================= 0 1 ----------- 5651 98 | 0 = 0 665 1015 | 1 = 1 Confusion matrix format: Actual (rowClass) predicted as (columnClass) N times ==================================================================
四、用SpringBoot将模型封装成服务
模型保存之后,就是一堆死参数,怎么变成线上的服务呢?人脸识别服务分为两种1:1和1:N
1、1:1应用
典型的1:1应用如手机的人脸识别解锁,钉钉的人脸识别考勤,这种应用比较简单,仅仅只需要张三是张三即可,运算量很小。很容易实现
2、1:N应用
典型的1:N应用如公安机关的人脸找人,在不知道目标人脸身份的前提下,从海量人脸库中找到目标人脸是谁。当人脸库中数据量巨大的时候,计算是一个很大的问题。
如果不要求结构可以实时出来,可以离线用Hadoop MapReduce或者Spark来计算一把,我们需要做的工作仅仅是封装一个Hive UDF函数、或者MapReduce jar,再或者是Spark RDD编程即可。
但对于要求计算结果实时性,这个问题不能转化为一个索引问题,所以需要设计一种计算框架,可以分布式的解决全局Max或者全局Top的问题,大致结构如下:
蓝色箭头表示请求留向,绿色箭头表示计算结果返回,图中描述了一个客户端请求打到了节点Node3上,由Node3转发请求到其他Node,并行计算。当然如果各个Node内存够大,可以将整个人脸库的张量都预热到内存常驻,加快计算速度。
当然,本篇博客中并没有实现并行计算框架,只实现了用springboot将模型包装成服务。运行FaceRecognitionApplication,访问http://localhost:8080/index,服务效果如下:
小编的主要意图是介绍如何把DL4J用于实战,包括pretrained模型参数的获取、自定义层的实现,自定义迭代器的实现,用springboot包装层服务等等。
当然一个人脸识别系统只有一个图片embedding和求张量距离是不够的,还应该包括人脸矫正、抵御AI attack(后面的博客也会介绍如何用DL4J进行 FGSM 攻击)、人脸关键部位特征提取等等很多精细化的工作要做。当然要把人脸识别做成一个通用SAAS服务,也是有很多工作要做。
要训练一个好的人脸识别模型,需要多种loss function的配合,如可以先用SoftMax做分类,再用Center Loss、Triple Loss做微调,后续的博客中将介绍如何用DL4J实现Triple Loss,来训练人脸识别模型。
以上就是如何用DL4J构建起一个人脸识别系统,小编相信有部分知识点可能是我们日常工作会见到或用到的。希望你能通过这篇文章学到更多知识。更多详情敬请关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。