这篇文章主要讲解了“1、如何用flink的table和sql构建pom文件”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“1、如何用flink的table和sql构建pom文件”吧!
构建pom文件
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.example</groupId> <artifactId>flinksqldemo</artifactId> <version>1.0-SNAPSHOT</version> <properties> <!-- Encoding --> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> <scala.binary.version>2.11</scala.binary.version> <scala.version>2.11.8</scala.version> <kafka.version>0.10.2.1</kafka.version> <flink.version>1.12.0</flink.version> <hadoop.version>2.7.3</hadoop.version> <!-- scope 本地调试时注销 设定为默认的 compile 打包时设定为 provided --> <setting.scope>compile</setting.scope> </properties> <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>8</source> <target>8</target> </configuration> </plugin> </plugins> </build> <dependencies> <!--flink start--> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-table-planner-blink_2.11</artifactId> <version>1.12.0</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-java</artifactId> <version>${flink.version}</version> <scope>${setting.scope}</scope> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_2.11</artifactId> <version>${flink.version}</version> <scope>${setting.scope}</scope> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_2.11</artifactId> <version>${flink.version}</version> <scope>${setting.scope}</scope> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-kafka-0.10_${scala.binary.version}</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId> <version>${flink.version}</version> <scope>${setting.scope}</scope> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-connector-filesystem_${scala.binary.version}</artifactId> <version>${flink.version}</version> </dependency> <!--<dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-statebackend-rocksdb_${scala.binary.version}</artifactId> <version>${flink.version}</version> </dependency>--> <!-- flink end--> <!-- kafka start --> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka_${scala.binary.version}</artifactId> <version>${kafka.version}</version> <scope>${setting.scope}</scope> </dependency> <!-- kafka end--> <!-- hadoop start --> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>${hadoop.version}</version> <scope>${setting.scope}</scope> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-hdfs</artifactId> <version>${hadoop.version}</version> <scope>${setting.scope}</scope> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>${hadoop.version}</version> <scope>${setting.scope}</scope> </dependency> <!-- hadoop end --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-api</artifactId> <version>1.7.25</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.72</version> </dependency> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>2.7.3</version> </dependency> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>29.0-jre</version> </dependency> </dependencies> </project>
2、编写代码
package com.jd.data; import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.table.api.Table; import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; public class test { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); DataStreamSource<String> stream = env.readTextFile("/Users/liuhaijing/Desktop/flinktestword/aaa.txt"); // DataStreamSource<String> stream = env.socketTextStream("localhost", 8888); SingleOutputStreamOperator<SensorReading> map = stream.map(new MapFunction<String, SensorReading>() { public SensorReading map(String s) throws Exception { String[] split = s.split(","); return new SensorReading(split[0], split[1], split[2]); } }); StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env); // 使用 table api // Table table = tableEnv.fromDataStream(map); // table.printSchema(); // Table select = table.select("a,b"); // 使用 sql api tableEnv.createTemporaryView("test", map); Table select = tableEnv.sqlQuery(" select a, b from test"); DataStream<SensorReading2> sensorReading2DataStream = tableEnv.toAppendStream(select, SensorReading2.class); sensorReading2DataStream.map(new MapFunction<SensorReading2, Object>() { @Override public Object map(SensorReading2 value) throws Exception { System.out.println(value.a+" "+ value.b); return null; } }); env.execute(); } }
package com.jd.data; public class SensorReading { public String a; public String b; public String c; public SensorReading(){ } public SensorReading(String a, String b, String c) { this.a = a; this.b = b; this.c = c; } public String getA() { return a; } public void setA(String a) { this.a = a; } public String getB() { return b; } public void setB(String b) { this.b = b; } public String getC() { return c; } public void setC(String c) { this.c = c; } }
package com.jd.data; public class SensorReading2 { public String a; public String b; public SensorReading2(){ } public SensorReading2(String a, String b) { this.a = a; this.b = b; } public String getA() { return a; } public void setA(String a) { this.a = a; } public String getB() { return b; } public void setB(String b) { this.b = b; } }
注意:pojo 中属性必须是public的, 包含无参构造器
感谢各位的阅读,以上就是“1、如何用flink的table和sql构建pom文件”的内容了,经过本文的学习后,相信大家对1、如何用flink的table和sql构建pom文件这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。