温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

如何解析Spark-MLlib中的向量

发布时间:2021-12-17 10:23:48 来源:亿速云 阅读:180 作者:柒染 栏目:大数据

这篇文章将为大家详细讲解有关如何解析Spark-MLlib中的向量,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。

       如何解析Spark-MLlib中的向量      

矩阵转置

           如何解析Spark-MLlib中的向量    

           如何解析Spark-MLlib中的向量    

向量

           如何解析Spark-MLlib中的向量    

Spark 向量是以对象形式存储的

Vector
scala> import org.apache.spark.mllib.linalg.{Vectors,Vector}import org.apache.spark.mllib.linalg.{Vectors, Vector}scala> Vectors.dense(1,2,3,4)res0: org.apache.spark.mllib.linalg.Vector = [1.0,2.0,3.0,4.0]scala> breeze.linalg.DenseVector(1,2,3,4)res1: breeze.linalg.DenseVector[Int] = DenseVector(1, 2, 3, 4)scala> res1.tres2: breeze.linalg.Transpose[breeze.linalg.DenseVector[Int]] = Transpose(DenseVector(1, 2, 3, 4))scala> res1+res1res3: breeze.linalg.DenseVector[Int] = DenseVector(2, 4, 6, 8)scala> res1*res1.tres4: breeze.linalg.DenseMatrix[Int] =1  2  3   42  4  6   83  6  9   124  8  12  16

关于如何解析Spark-MLlib中的向量就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI