本篇内容主要讲解“BASE理论是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“BASE理论是什么”吧!
BASE理论是Basically Available(基本可用),Soft State(软状态)和Eventually Consistent(最终一致性)三个短语的缩写。BASE 理论是对 CAP 中一致性和可用性权衡的结果,其核心思想是:既是无法做到强一致性(Strong consistency),但每个应用都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性(Eventual consistency),BASE理论是CAP理论中AP的延伸。
BASE理论它的核心就是基本可用(Basically Available)和最终一致性(Eventually consistent)。而软状态描述的是实现服务可用性的时候系统数据的一种过渡状态,也就是说不同节点间,数据副本存在短暂的不一 致。软状态是一种中间过渡状态。
当分布式系统在出现不可预知的故障时,允许损失部分功能的可 用性,保障核心功能的可用性。
12306 订票系统基出售不同区域的票,将访问请求错开,削弱请求峰值。在春运期间,深圳出发的火车票在 8 点开售,北京出发的火车票在9点开售。分布式消息队列的一个主要功能就是削峰。
正常情况下的搜索引擎0.5秒即返回给用户结果,而基本可用的搜索引擎可以在2秒作用返回结果。通过牺牲响应时间的可用性,保证核心功能的运行
用小图片来替代原始图片,通过降低图片的清晰度和大小,提升系统的处理能力。淘宝在双十一早期会关闭购物历史记录查询能力
接收到的请求放在指定的队列中排队处理,如果请求等 待时间超时了(假设是 100ms),这个时候直接拒绝超时请求;再比如队列满了之后,就 清除队列中一定数量的排队请求,保护系统不过载,实现系统的基本可用
不可能一直是软状态,必须有个时间期限。在期限过后,应当保证所有副本保持数据一致性,从而达到数据的最终一致性。这个时间期限取决于网络延时、系统负载、数据复制方案设计等等因素。最终一致性分为5种:
因果一致性指的是:如果节点A在更新完某个数据后通知了节点B,那么节点B之后对该数据的访问和修改都是基于A更新后的值。于此同时,和节点A无因果关系的节点C的数据访问则没有这样的限制。
读己之所写指的是:节点A更新一个数据后,它自身总是能访问到自身更新过的最新值,而不会看到旧值。其实也算一种因果一致性。
会话一致性将对系统数据的访问过程框定在了一个会话当中:系统能保证在同一个有效的会话中实现 “读己之所写” 的一致性,也就是说,执行更新操作之后,客户端能够在同一个会话中始终读取到该数据项的最新值。
单调读一致性指的是:如果一个节点从系统中读取出一个数据项的某个值后,那么系统对于该节点后续的任何数据访问都不应该返回更旧的值。
单调写一致性指的是:一个系统要能够保证来自同一个节点的写操作被顺序的执行。
在实际的实践中,这5种系统往往会结合使用,以构建一个具有最终一致性的分布式系统。
实际上,不只是分布式系统使用最终一致性,关系型数据库在某个功能上,也是使用最终一致性的。比如备份,数据库的复制过程是需要时间的,这个复制过程中,业务读取到的值就是旧的。当然,最终还是达成了数据一致性。这也算是一个最终一致性的经典案例。几乎所有的互联网系统采用的都是最终一致性,只有在实在无法使用最终一致性,才使用强一致性或事务,比如,对于决定系统运行的敏感元数据,需要考虑采用强一致性,对于与钱 有关的支付系统或金融系统的数据,需要考虑采用事务。
到此,相信大家对“BASE理论是什么”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。