本篇内容主要讲解“Flink Aggregate怎么用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Flink Aggregate怎么用”吧!
Aggregate算子:提供基于事件窗口进行增量计算的函数。(对输入窗口每个数据流元素递增聚合计算,并将窗口状态与窗口内元素保持在累加器中)
示例环境
java.version: 1.8.x
flink.version: 1.11.1
Aggregate.java
import com.flink.examples.DataSource;
import org.apache.flink.api.common.accumulators.AverageAccumulator;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import java.util.List;
/**
* @Description Aggregate算子:提供基于事件窗口进行增量计算的函数。(对输入窗口每个数据流元素递增聚合计算,并将窗口状态与窗口内元素保持在累加器中)
*/
public class Aggregate {
/**
* 遍历集合,分别打印不同性别的总人数与平均值
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//Tuple3<姓名,性别(man男,girl女),年龄>
List<Tuple3<String, String, Integer>> tuple3List = DataSource.getTuple3ToList();
DataStream<MyAverageAccumulator> dataStream = env.fromCollection(tuple3List)
.keyBy((KeySelector<Tuple3<String, String, Integer>, String>) k -> k.f1)
//按数量窗口滚动,每3个输入窗口数据流,计算一次
.countWindow(3)
//只能基于Windowed窗口Stream进行调用
.aggregate(new AggregateFunction<Tuple3<String, String, Integer>, MyAverageAccumulator, MyAverageAccumulator>() {
/**
* 创建新累加器,开始聚合计算
* @return
*/
@Override
public MyAverageAccumulator createAccumulator() {
return new MyAverageAccumulator();
}
/**
* 将窗口输入的数据流值添加到窗口累加器,并返回新的累加器值
* @param tuple3
* @param accumulator
* @return
*/
@Override
public MyAverageAccumulator add(Tuple3<String, String, Integer> tuple3, MyAverageAccumulator accumulator) {
System.out.println("tuple3:" + tuple3.toString());
accumulator.setGender(tuple3.f1);
//此accumulator保含个数统计和值累计两个属性,add方法内会计算窗口内总数与求和
accumulator.add(tuple3.f2);
return accumulator;
}
/**
* 获取累加器聚合结果
* @param accumulator
* @return
*/
@Override
public MyAverageAccumulator getResult(MyAverageAccumulator accumulator) {
return accumulator;
}
/**
* 合并两个累加器,返回合并后的累加器的状态
* @param a
* @param b
* @return
*/
@Override
public MyAverageAccumulator merge(MyAverageAccumulator a, MyAverageAccumulator b) {
a.merge(b);
return a;
}
});
dataStream.print();
env.execute("flink Filter job");
}
/**
* 添加性别属性(此类用于显示不同性别的平均值)
*/
public static class MyAverageAccumulator extends AverageAccumulator{
private String gender;
public String getGender() {
return gender;
}
public void setGender(String gender) {
this.gender = gender;
}
@Override
public String toString() {
//继承父类的this.getLocalValue()方法用于计算并返回平均值
return super.toString() + ", gender to " + gender;
}
}
}
打印结果
tuple3:(张三,man,20)
tuple3:(李四,girl,24)
tuple3:(刘六,girl,32)
tuple3:(王五,man,29)
tuple3:(伍七,girl,18)
tuple3:(吴八,man,30)
4> AverageAccumulator 24.666666666666668 for 3 elements, gender to girl
2> AverageAccumulator 26.333333333333332 for 3 elements, gender to man
到此,相信大家对“Flink Aggregate怎么用”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://my.oschina.net/u/437309/blog/4733911