原文:Three algorithms for converting color to grayscale
如何转换成彩***像灰度?如果每个彩色像素由三重(R,G,B)(红,绿,蓝)的强度描述,
如何讲(R,G,B)映射到一个单独的数字作为的灰度值?在GIMP图像处理软件有三种算法。
lightness方法:是取最突触颜色和最不突出颜色的平均值: (max(R, G, B) + min(R, G, B)) / 2.
average方法:最简单取R,G,B的平均值:(R+G+B)/3 .
luminosity方法:是平均方法的一个更复杂的版本。它也是平均值,但它通过加权平均来解释人类感知。我们对绿色比其他颜色更敏感,所以绿色加权最大。其计算公式为亮度为0.21 R +0.72 G +0.07 B.
下面向日葵图片示例来自GIM文档:
lightness方法倾向于降低对比度。luminosity方法效果最好,如果你使用GIMP改变一个图片从RGB到灰度图片通过Image->ModeMenu,该方法是默认使用的方法。
然而,一些图像看起来更好地利用其他算法之一,有时三种方法产生非常相似的结果。
更多关于颜色和灰度
附:
1. 调色板:https://www.google.com/design/spec/style/color.html#color-color-palette
2. GIMP(GNU Image Manipulation Program):开源图片处理工具 开源免费跨平台。
3. jscience 开源库提供的灰阶计算加权值常量文档
4. Java封装GIMP和Jscience提供的灰阶计算方法,代码示例:
/** * Compute method about grayscale from * <p/> * gimp website * http://docs.gimp.org/2.6/en/gimp-tool-desaturate.html * http://www.gimp.org/ * <p/> * http://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/ * http://www.johndcook.com/blog/2009/08/24/more-on-colors-and-grayscale/ */ public static class GrayScaleUtil { interface GrayScaleCompute { int grayScale(int r, int g, int b); } public enum GrayScale { Lightness(new GrayScaleCompute() { @Override public int grayScale(int r, int g, int b) { return GrayScaleUtil.lightness(r, g, b); } }), Average(new GrayScaleCompute() { @Override public int grayScale(int r, int g, int b) { return GrayScaleUtil.average(r, g, b); } }), Luminosity(new GrayScaleCompute() { @Override public int grayScale(int r, int g, int b) { return GrayScaleUtil.luminosity(r, g, b); } }), BT709(new GrayScaleCompute() { @Override public int grayScale(int r, int g, int b) { return GrayScaleUtil.BT709(r, g, b); } }), RMY(new GrayScaleCompute() { @Override public int grayScale(int r, int g, int b) { return GrayScaleUtil.RMY(r, g, b); } }), Y(new GrayScaleCompute() { @Override public int grayScale(int r, int g, int b) { return GrayScaleUtil.Y(r, g, b); } }); private GrayScaleCompute gc; GrayScale(GrayScaleCompute gc) { this.gc = gc; } public int grayScale(int r, int g, int b) { return this.gc.grayScale(r, g, b); } } //Lightness = (max(r,g,b)+min(r,g,b))/2 public static int lightness(int r, int g, int b) { return (Math.max(Math.max(r, g), b) + Math.min(Math.min(r, g), b)) / 2; } // Average Brightness = (r+g+b)/3 public static int average(int r, int g, int b) { return (r + g + b) / 3; } //Luminosity =(0.21*r+0.72*g+0.07*b) public static int luminosity(int r, int g, int b) { return (int) (0.21 * r + 0.72 * g + 0.07 * b); } /** * Magic number about grayscale from http://jscience.org/experimental/javadoc/org/jscience/computing/ai/vision/GreyscaleFilter.html */ //BT709 Greyscale: Red: 0.2125 Green: 0.7154 Blue: 0.0721 public static int BT709(int r, int g, int b) { return (int) (0.2125 * r + 0.7154 * g + 0.0721 * b); } //RMY Greyscale: Red: 0.5 Green: 0.419 Blue: 0.081 public static int RMY(int r, int g, int b) { return (int) (0.5 * r + 0.419 * g + 0.081 * b); } //Y-Greyscale (YIQ/NTSC): Red: 0.299 Green: 0.587 Blue: 0.114 public static int Y(int r, int g, int b) { return (int) (0.299 * r + 0.587 * g + 0.114 * b); } }
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。