本篇内容介绍了“什么是JVM直接内存”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
从上面的图中可以看到Java8相比Java7来讲将方法区的实现,从非堆空间(其实逻辑与堆相连,所属于运行时数据区内部)迁移到了本地内存中,不会造成FullGC过多的压力以及与老年代的耦合度过高的问题,减少FullGC的扫描范围,从而改为手动去回收机制(也可以自动回收需要配置调整)。 之前的文章里面介绍了JVM的运行时数据区的相关介绍,一直对直接内存的研究和学习较少,现在我们就开始介绍一下直接内存的分配方式以及回收方式。
1. 常见于NIO操作时,用于数据缓冲区(ByteBuffer.allocate),当然也可以采用Unsafe类进行native方法运作进行申请直接内存。
2. 分配回收成本较高(属于操作系统内存),但读写性能高。(因为直接内存不需要经过JVM解释器进行地址映射转换到系统真正内存,故此读写速度会比堆内存在快很多,但是申请和回收机制角度而言复杂,因为属于直接由操作系统进行管理,而非JVM直接进行管理。
3. 不受JVM内存回收管理(依旧存在内存溢出的问题),此外受限制与操作系统物理内存,以及我们可以手动设置它的阈值(MaxDirectMemory),默认情况下来讲直接内存几乎没有限制(当没有超出物理内存的控制而言)
4. jvm的内存分配与回收是自动的,不需要手动调用任何的方法,但是直接内存需要我们手动调用方法。
Java堆内存:
使用直接内存后,可以减少步骤:
可以看出来,直接内存无需进行与java堆内存进行映射和转换,可以直接去操作系统内存。
书写程序:每次都分配直接内存,直到内存溢出
public class Test1 { static int _100Mb=1024*1024*100; public static void main(String[] args) { List<ByteBuffer> list=new ArrayList<>(); int i=0; try { while (true){ ByteBuffer byteBuffer=ByteBuffer.allocateDirect(_100Mb); list.add(byteBuffer); i++; } }finally { System.out.println(i); } } }
测试结果:
Exception in thread "main" java.lang.OutOfMemoryError: Direct buffer memory at java.nio.Bits.reserveMemory(Bits.java:694) at java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:123) at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:311) at pers.zhb.test.Test1.main(Test1.java:15)
运行程序前:
直接内存的分配与释放程序:
public class Test1 { static int _1Gb=1024*1024*1024; public static void main(String[] args) throws IOException { ByteBuffer byteBuffer=ByteBuffer.allocateDirect(_1Gb); System.out.println("分配完毕"); System.in.read(); System.out.println("开始释放"); byteBuffer=null; System.gc(); } }
分配直接内存后:
可以看出来相关的多出一个java的进程,并且内存占用1037M,所以也证实了我们的猜测和预想。
在IDEA的控制台点击回车对内存进行释放:
可以看到恢复到了原始的状态。
控制台打印出分配与回收的提示:
分配完毕 开始释放 Process finished with exit code 0
其中System.gc() ,强制执行FullGC,回收掉byteBuffer对象
至此,我们的推测全部验证通过,直接内存会采用另外一个进程去存储相关的系统内存区域,并且不属于jvm内存之内的管理。
public class Test1 { static int _1Gb=1024*1024*1024; public static void main(String[] args) throws IOException { Unsafe unsafe=getUnsafe(); //分配内存 long base=unsafe.allocateMemory(_1Gb); unsafe.setMemory(base,_1Gb,(byte)0); System.in.read(); //释放内存 unsafe.freeMemory(base); System.in.read(); } public static Unsafe getUnsafe(){ Field field= null; try { field = Unsafe.class.getDeclaredField("theUnsafe"); } catch (NoSuchFieldException e) { e.printStackTrace(); } field.setAccessible(true); Unsafe unsafe= null; try { unsafe = (Unsafe)field.get(null); } catch (IllegalAccessException e) { e.printStackTrace(); } return unsafe; } }
jvm的内存分配与回收是自动的,不需要手动调用任何的方法,但是直接内存需要我们手动调用方法。
ByteBuffer byteBuffer= ByteBuffer.allocateDirect(_1Gb);
public static ByteBuffer allocateDirect(int capacity) { return new DirectByteBuffer(capacity); }
DirectByteBuffer(int cap) { super(-1, 0, cap, cap); boolean pa = VM.isDirectMemoryPageAligned(); int ps = Bits.pageSize(); long size = Math.max(1L, (long)cap + (pa ? ps : 0)); Bits.reserveMemory(size, cap); long base = 0; try { base = unsafe.allocateMemory(size); } catch (OutOfMemoryError x) { Bits.unreserveMemory(size, cap); throw x; } unsafe.setMemory(base, size, (byte) 0); if (pa && (base % ps != 0)) { // Round up to page boundary address = base + ps - (base & (ps - 1)); } else { address = base; } cleaner = Cleaner.create(this, new Deallocator(base, size, cap)); att = null; }
底层用到的依旧是unsafe对象
减少了垃圾回收
堆外内存是直接受操作系统管理(不是JVM)。这样做能保持一个较小的堆内内存,以减少垃圾收集对应用的影响。
提升IO速度
堆内内存由JVM管理,属于“用户态”;而堆外内存由OS管理,属于“内核态”。如果从堆内向磁盘写数据时,数据会被先复制到堆外内存,即内核缓冲区,然后再由OS写入磁盘,使用堆外内存避免了这个操作。
没有JVM协助管理内存,需要我们自己手动来管理堆外内存,防止内存溢出同时也为了避免一直有FULL GC,最终导致物理内存被耗完。
我们会指定直接内存的最大值,通过-XX:MaxDirectMemorySize来指定,当达到阈值的时候,调用system.gc来进行一次full gc,把那些没有被使用的直接内存回收掉。
此外,分配直接内存和回收内存的性能和速度也比较复杂,所以成本也会很高,特别是回收需要FullGC、分配内存的时候,需要切换一次用户态到系统态的操作,分配直接内存,从而用用户态的句柄来引用系统态的内存空间。
“什么是JVM直接内存”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。